DsDNA persistence length

From OxDNA
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Persistence length of a double-stranded DNA

The example shows how to calculate a persistence length of a double stranded DNA molecule. dsDNA persistence length. The persistence length in this example is calculated using the following formula (see [1] for details):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle {\bf n_k} \cdot {\bf n_0} \rangle = \exp(- k \langle l_0 \rangle /L_{ps}). }

In the EXAMPLES/PERSISTENCE_LENGTH directory, you will find a setup for calculating the persistence length of a 202 base pairs long dsDNA. Note that for calculating a persistence length of a dsDNA, one needs a large number of decorrelated states. To obtain the states (which will be saved into a trajectory file), run the simulation program using the prepared input_persistence file:

oxDNA input_persistence

The program will run a molecular dynamics simulation at 23 °C and record the individual configurations. They are saved in trajectory.dat file. To analyze the data, use the python script dspl.py:

dspl.py trajectory.dat init.top 10 50

This program will produce a table of correlations between helical vectors, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle {\bf n_k} \cdot {\bf n_0} \rangle } . Using an exponential fit to these data, one can find the persistence length.