Difference between revisions of "Publications"

From OxDNA
 
(231 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
#T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''Phys. Rev. Lett''. '''104''', 178101 (2010)
 
#T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''Phys. Rev. Lett''. '''104''', 178101 (2010)
 
#:[http://prl.aps.org/abstract/PRL/v104/i17/e178101 DNA Nanotweezers Studied with a Coarse-Grained Model of DNA] ([http://arxiv.org/abs/0911.0555 arXiv])
 
#:[http://prl.aps.org/abstract/PRL/v104/i17/e178101 DNA Nanotweezers Studied with a Coarse-Grained Model of DNA] ([http://arxiv.org/abs/0911.0555 arXiv])
 +
#T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''J. Phys. Condens. Matter''. '''22''', 104102 (2010)
 +
#:[http://dx.doi.org/10.1088/0953-8984/22/10/104102 Extracting bulk properties of self-assembling systems from small simulations] ([https://arxiv.org/abs/0910.1201 arXiv])
 
#T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''J. Chem. Phys'', '''134''', 085101 (2011)
 
#T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''J. Chem. Phys'', '''134''', 085101 (2011)
#:[http://link.aip.org/link/?JCP/134/085101 Structural, mechanical and thermodynamic properties of a coarse-grained DNA model] ([http://arxiv.org/abs/arXiv:1009.4480 arXiv])
+
#:[http://aip.scitation.org/doi/abs/10.1063/1.3552946?journalCode=jcp Structural, mechanical and thermodynamic properties of a coarse-grained DNA model] ([http://arxiv.org/abs/arXiv:1009.4480 arXiv])
 
#T. E. Ouldridge, D.Phil. Thesis, University of Oxford, 2011.
 
#T. E. Ouldridge, D.Phil. Thesis, University of Oxford, 2011.
 
#:[http://ora.ox.ac.uk/objects/uuid:b2415bb2-7975-4f59-b5e2-8c022b4a3719 Coarse-grained modelling of DNA and DNA self-assembly]
 
#:[http://ora.ox.ac.uk/objects/uuid:b2415bb2-7975-4f59-b5e2-8c022b4a3719 Coarse-grained modelling of DNA and DNA self-assembly]
 
#F. Romano, A. Hudson, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, ''J. Chem. Phys.'' '''136''', 215102 (2012)
 
#F. Romano, A. Hudson, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, ''J. Chem. Phys.'' '''136''', 215102 (2012)
#:[http://jcp.aip.org/resource/1/jcpsa6/v136/i21/p215102_s1 The effect of topology on the structure and free energy landscape of DNA kissing complexes] ([http://arxiv.org/abs/1203.3577 arXiv])
+
#:[http://dx.doi.org/10.1063/1.4722203 The effect of topology on the structure and free energy landscape of DNA kissing complexes] ([http://arxiv.org/abs/1203.3577 arXiv])
 
#C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, ''Soft Matter'' '''8''', 8388 (2012)
 
#C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, ''Soft Matter'' '''8''', 8388 (2012)
 
#:[http://pubs.rsc.org/en/content/articlelanding/2012/sm/c2sm25845e Self-assembly of short DNA duplexes: from a coarse-grained model to experiments through a theoretical link] ([http://arxiv.org/abs/1204.0985 arXiv])
 
#:[http://pubs.rsc.org/en/content/articlelanding/2012/sm/c2sm25845e Self-assembly of short DNA duplexes: from a coarse-grained model to experiments through a theoretical link] ([http://arxiv.org/abs/1204.0985 arXiv])
Line 12: Line 14:
 
#:[http://pubs.acs.org/doi/abs/10.1021/jp3080755 DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism] ([http://arxiv.org/abs/1206.2636 arXiv])
 
#:[http://pubs.acs.org/doi/abs/10.1021/jp3080755 DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism] ([http://arxiv.org/abs/1206.2636 arXiv])
 
#P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, ''J. Chem. Phys.'' '''137''', 135101 (2012)
 
#P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, ''J. Chem. Phys.'' '''137''', 135101 (2012)
#:[http://jcp.aip.org/resource/1/jcpsa6/v137/i13/p135101_s1 Sequence-dependent thermodynamics of a coarse-grained DNA model] ([http://arxiv.org/abs/1207.3391 arxiv])  
+
#:[http://dx.doi.org/10.1063/1.4754132 Sequence-dependent thermodynamics of a coarse-grained DNA model] ([http://arxiv.org/abs/1207.3391 arxiv])
 +
#T.E. Ouldridge, ''J. Chem. Phys.'' '''137''', 144105 (2012)
 +
#:[https://doi.org/10.1063/1.4757267 Inferring bulk self-assembly properties from simulations of small systems with multiple constituent species and small systems in the grand canonical ensemble] ([https://arxiv.org/abs/1204.5716 arXiv])
 
#F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, ''J. Chem. Phys.'' '''138''', 085101 (2013)
 
#F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, ''J. Chem. Phys.'' '''138''', 085101 (2013)
#:[http://jcp.aip.org/resource/1/jcpsa6/v138/i8/p085101_s1 Coarse-grained simulations of DNA overstretching] ([http://arxiv.org/abs/1209.5892 arXiv])
+
#:[http://dx.doi.org/10.1063/1.4792252 Coarse-grained simulations of DNA overstretching] ([http://arxiv.org/abs/1209.5892 arXiv])
 
#T. E. Ouldridge, R. L. Hoare, A. A. Louis, J. P. K. Doye, J. Bath, A. J. Turberfield, ''ACS Nano'' '''7''', 2479-2490  (2013)  
 
#T. E. Ouldridge, R. L. Hoare, A. A. Louis, J. P. K. Doye, J. Bath, A. J. Turberfield, ''ACS Nano'' '''7''', 2479-2490  (2013)  
 
#:[http://pubs.acs.org/doi/abs/10.1021/nn3058483 Optimizing DNA nanotechnology through coarse-grained modelling: a two-footed DNA walker]
 
#:[http://pubs.acs.org/doi/abs/10.1021/nn3058483 Optimizing DNA nanotechnology through coarse-grained modelling: a two-footed DNA walker]
 
#T. E. Ouldridge, P. Šulc,  F. Romano, J. P. K. Doye, A. A. Louis, ''Nucleic Acids Res.'' '''41''', 8886-8895 (2013)  
 
#T. E. Ouldridge, P. Šulc,  F. Romano, J. P. K. Doye, A. A. Louis, ''Nucleic Acids Res.'' '''41''', 8886-8895 (2013)  
#:[http://nar.oxfordjournals.org/cgi/content/full/gkt687?ijkey=BXQkepyS0xSnFqg&keytype=ref DNA hybridization kinetics: zippering, internal displacement and sequence dependence] ([http://arxiv.org/abs/1303.3370 arXiv])
+
#:[https://dx.doi.org/10.1093%2Fnar%2Fgkt687 DNA hybridization kinetics: zippering, internal displacement and sequence dependence] ([http://arxiv.org/abs/1303.3370 arXiv])
 
#J.P.K. Doye, T. E. Ouldridge, A. A. Louis, F. Romano, P. Šulc, C. Matek, B.E.K. Snodin, L. Rovigatti, J. S. Schreck, R.M. Harrison, W.P.J. Smith, ''Phys. Chem. Chem. Phys'' '''15''', 20395-20414 (2013)
 
#J.P.K. Doye, T. E. Ouldridge, A. A. Louis, F. Romano, P. Šulc, C. Matek, B.E.K. Snodin, L. Rovigatti, J. S. Schreck, R.M. Harrison, W.P.J. Smith, ''Phys. Chem. Chem. Phys'' '''15''', 20395-20414 (2013)
 
#:[http://pubs.rsc.org/en/content/articlelanding/2013/cp/c3cp53545b#!divAbstract Coarse-graining DNA for simulations of DNA nanotechnology] ([http://arxiv.org/abs/1308.3843 arXiv])
 
#:[http://pubs.rsc.org/en/content/articlelanding/2013/cp/c3cp53545b#!divAbstract Coarse-graining DNA for simulations of DNA nanotechnology] ([http://arxiv.org/abs/1308.3843 arXiv])
Line 39: Line 43:
 
# M. Mosayebi, F. Romano, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ''J. Phys. Chem. B'' '''118''', 14326-14335 (2014)
 
# M. Mosayebi, F. Romano, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ''J. Phys. Chem. B'' '''118''', 14326-14335 (2014)
 
#:[http://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1021%2Fjp510061f&v=13bb91c1 The role of loop stacking in the dynamics of DNA hairpin formation] ([http://arxiv.org/abs/1410.1218 arXiv])
 
#:[http://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1021%2Fjp510061f&v=13bb91c1 The role of loop stacking in the dynamics of DNA hairpin formation] ([http://arxiv.org/abs/1410.1218 arXiv])
 +
# I. Y. Loh, J.Cheng, S. R. Tee, A. Efremov, and Z. Wang, ''ACS Nano'' '''8''', 10293–10304 (2014)
 +
#:[http://pubs.acs.org/doi/abs/10.1021/nn5034983 From bistate molecular switches to self-directed track-walking nanomotors]
 
# C. Matek, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, ''Sci. Rep.'', '''5''', 7655 (2015)
 
# C. Matek, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, ''Sci. Rep.'', '''5''', 7655 (2015)
 
#:[http://dx.doi.org/10.1038/srep07655 Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA] ([http://arxiv.org/abs/1404.2869 arXiv])
 
#:[http://dx.doi.org/10.1038/srep07655 Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA] ([http://arxiv.org/abs/1404.2869 arXiv])
Line 59: Line 65:
 
# C. Matek, P. Šulc, F. Randisi, J.P.K. Doye, A. A. Louis,  ''J. Chem. Phys.''  '''143''', 243122 (2015)
 
# C. Matek, P. Šulc, F. Randisi, J.P.K. Doye, A. A. Louis,  ''J. Chem. Phys.''  '''143''', 243122 (2015)
 
#:[http://dx.doi.org/10.1063/1.4933066 Coarse-grained modelling of supercoiled RNA] ([http://arxiv.org/abs/1506.02539 arXiv])
 
#:[http://dx.doi.org/10.1063/1.4933066 Coarse-grained modelling of supercoiled RNA] ([http://arxiv.org/abs/1506.02539 arXiv])
 +
# Q. Wang, C.G. Myers, and B.M. Pettitt, ''J. Phys. Chem. B'' '''119''', 4937–4943 (2015)
 +
#:[http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.5b00865 Twist-induced defects of the P-SSP7 genome revealed by modeling the cryo-EM density]
 
# R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye,  ''arXiv'' (2015)
 
# R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye,  ''arXiv'' (2015)
 
#:[http://arxiv.org/abs/1506.09005 Coarse-grained modelling of strong DNA bending I: Thermodynamics and comparison to an experimental "molecular vice"]
 
#:[http://arxiv.org/abs/1506.09005 Coarse-grained modelling of strong DNA bending I: Thermodynamics and comparison to an experimental "molecular vice"]
# R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye,  ''arXiv'' (2015)
+
# R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye,  ''J. Chem. Theor. Comput.'' '''15''' 4660-4672 (2019)
#:[http://arxiv.org/abs/1506.09008 Coarse-grained modelling of strong DNA bending II: Cyclization]
+
#: [https://doi.org/10.1021/acs.jctc.9b00112 Identifying physical causes of apparent enhanced cyclization of short DNA molecules with a coarse-grained model] ([http://arxiv.org/abs/1506.09008 arXiv]) ([http://dx.doi.org/10.5281/zenodo.1753767 data])
 
# J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, ''Science'' '''349''', 977-981 (2015)
 
# J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, ''Science'' '''349''', 977-981 (2015)
#:[http://dx.doi.org/10.1126/science.aab2666  Base triplet stepping by the Rad51/RecA family of recombinases
+
#:[http://dx.doi.org/10.1126/science.aab2666  Base triplet stepping by the Rad51/RecA family of recombinases]
# B.E.K. Snodin, F. Romano, L. Rovigatti, T.E. Ouldridge, A.A. Louis, J.P.K. Doye, ''ACS Nano'' '''10''', 1724-1737 (2016)
+
# B. E. K. Snodin, F. Romano, L. Rovigatti, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ''ACS Nano'' '''10''', 1724-1737 (2016)
#:[http://pubs.rsc.org/en/content/articlelanding/2013/cp/c3cp53545b#!divAbstract Direct Simulation of the Self-Assembly of a Small DNA Origami]
+
#:[http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05865 Direct Simulation of the Self-Assembly of a Small DNA Origami] ([https://ora.ox.ac.uk/objects/uuid:e71db18a-71f2-4806-9200-dc4cdc283ec8 data])
# V. Kočar, J.S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J.P.K. Doye, and R. Jerala, ''Nat. Commun.'' '''7''', 10803 (2016)
+
# V. Kočar, J. S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J. P. K. Doye, and R. Jerala, ''Nat. Commun.'' '''7''', 10803 (2016)
 
#:[http://dx.doi.org/10.1038/ncomms10803 Design principles for rapid folding of knotted DNA nanostructures]
 
#:[http://dx.doi.org/10.1038/ncomms10803 Design principles for rapid folding of knotted DNA nanostructures]
 
#  J. S. Schreck, F. Romano, M.H. Zimmer, A.A. Louis and J.P.K. Doye, ''ACS Nano'', '''10''', 4236-4247 (2016)
 
#  J. S. Schreck, F. Romano, M.H. Zimmer, A.A. Louis and J.P.K. Doye, ''ACS Nano'', '''10''', 4236-4247 (2016)
 
#:[http://dx.doi.org/10.1021/acsnano.5b07664 Characterizing DNA star-tile-based nanostructures using a coarse-grained model]
 
#:[http://dx.doi.org/10.1021/acsnano.5b07664 Characterizing DNA star-tile-based nanostructures using a coarse-grained model]
# T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, ''Nucl. Acids Res.'' '''44''', 9121-9130 (2016)
+
# M. Liu, J. Cheng, S.R. Tee, S. Sreelatha, I.Y. Loh, and Z. Wang, ''ACS Nano'', '''10''', 5882–5890 (2016)
 +
#:[http://pubs.acs.org/doi/abs/10.1021/acsnano.6b01035 Biomimetic autonomous enzymatic nanowalker of high fuel efficiency]
 +
# J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, L. Comez, L. Porcar, C.J. Jafta, G.C. Fadda, T. Bellini and F. Sciortino, ''J. Chem. Phys.'' '''145''', 084910 (2016)
 +
#:[http://dx.doi.org/10.1063/1.4961398 Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars]
 +
# T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, ''Nucleic Acids Res.'' '''44''', 9121-9130 (2016)
 
#:[http://dx.doi.org/10.1093/nar/gkw815 Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation]
 
#:[http://dx.doi.org/10.1093/nar/gkw815 Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation]
# A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, ''J. Phys: Condens. Matter'', '''29''', 014006 (2017).
+
# Q. Wang and B.M. Pettitt, ''J. Phys. Chem. Lett'' '''7''', 1042–1046 (2016)
#:[http://iopscience.iop.org/article/10.1088/0953-8984/29/1/014006 Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal] ([http://arxiv.org/abs/1607.06626 arXiv])
+
#:[http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.6b00246 Sequence affects the cyclization of DNA minicircles]
 +
# A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, ''J. Phys: Condens. Matter'' '''29''', 014006 (2017).
 +
#:[http://iopscience.iop.org/article/10.1088/0953-8984/29/1/014006 Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal] ([http://arxiv.org/abs/1607.06626 arXiv]) ([http://dx.doi.org/10.17863/cam.4904 data])
 +
# E. Locatelli, P. H. Handle, C. N. Likos, F. Sciortino and L. Rovigatti, ''ACS Nano'' '''11''', 2094-2102 (2017)
 +
#:[http://pubs.acs.org/doi/abs/10.1021/acsnano.6b08287 Condensation and demixing in solutions of DNA nanostars and their mixtures]
 +
# E. Skoruppa, M. Laleman, S. Nomidis, E. Carlon, ''J. Chem. Phys'' '''146''', 214902 (2017)
 +
#:[http://dx.doi.org/10.1063/1.4984039 DNA elasticity from coarse-grained simulations: the effect of groove asymmetry] [https://arxiv.org/abs/1703.02598 (arXiv)]
 +
# A. Suma and C. Micheletti, ''Proc. Natl. Acad. Sci. USA'' '''114''', E2991–E2997 (2017)
 +
#:[http://dx.doi.org/10.1073/pnas.1701321114 Pore translocation of knotted DNA rings]
 +
# Z. Shi, C. E. Castro and G. Arya, ''ACS Nano'' '''11''', 4617–4630 (2017)
 +
#:[http://dx.doi.org/10.1021/acsnano.7b00242 Conformational dynamics of mechanically compliant DNA nanostructures from coarse-grained molecular dynamics simulations]
 +
# H. Yagyu, J.-Y. Lee, D.-N. Kim, and O. Tabata, ''J. Phys. Chem. B'' '''121''', 5033–5039 (2017)
 +
#:[http://dx.doi.org/10.1021/acs.jpcb.7b03931 Coarse-grained molecular dynamics model of double-stranded DNA for DNA nanostructure design]
 +
# S. Vangaveti,  R. J. D'Esposito,  J. L. Lippens,  D. Fabris  and  S. V. Ranganathan, ''Phys. Chem. Chem. Phys.'' '''19''', 14937-14946 (2017)
 +
#:[http://pubs.rsc.org/en/content/articlehtml/2017/cp/c7cp00717e A coarse-grained model for assisting the investigation of structure and dynamics of large nucleic acids by ion mobility spectrometry–mass spectrometry]
 +
# A. Henning-Knechtel, J. Knechtel and M. Magzoub, ''Nucleic Acids Res.'' '''45''', 12057–12068 (2017)
 +
#: [https://doi.org/10.1093/nar/gkx990 DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels]
 +
# R. Sharma, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ''ACS Nano'' '''11''', 12426–12435 (2017)
 +
#:[http://dx.doi.org/10.1021/acsnano.7b06470 Characterizing the motion of jointed DNA nanostructures using a coarse-grained model]
 +
# Q.Y. Yeo, I.Y. Loh, S.R. Tee, Y.H. Chiang, J. Cheng, M.H. Liu and Z.S. Wang, ''Nanoscale'' '''9''', 12142-12149 (2017)
 +
#:[https://doi.org/10.1039/C7NR03809G A DNA bipedal nanowalker with a piston-like expulsion stroke]
 +
# Q. Wang, R.N. Irobalieva, W. Chiu, M.F. Schmid, J.M. Fogg, L. Zechiedrich, B.M. Pettitt, ''Nucleic Acids Res.'' '''45''' 7633-7642 (2017)
 +
#: [https://doi.org/10.1093/nar/gkx516 Influence of DNA sequence on the structure of minicircles under torsional stress]
 +
# B. Joffroy, Y.O. Uca, D. Prešern, J.P.K. Doye and T.L. Schmidt, ''Nucleic Acids Res.'' '''46''', 538-545 (2018)
 +
#: [http://dx.doi.org/10.1093/nar/gkx1238 Rolling circle amplification shows a sinusoidal template length-dependent amplification bias] ([http://dx.doi.org/10.5287/bodleian:VJJYJXOrg data])
 +
# R.V. Reshetnikov, A.V. Stolyarova, A.O. Zalevsky, D.Y. Panteleev, G.V. Pavlova, D.V. Klinov, A.V. Golovin, A.D. Protopopova, ''Nucleic Acids Res.'' '''46''', 1102–1112 (2018)
 +
#: [https://doi.org/10.1093/nar/gkx1262 A coarse-grained model for DNA origami]
 +
# D.C. Khara, J.S. Schreck, T.E. Tomov, Y. Berger, T.E. Ouldridge, J.P.K. Doye and E. Nir, ''Nucleic Acids Res.'' '''46''', 1553-1561 (2018)
 +
#: [http://dx.doi.org/10.1093/nar/gkx1282 DNA bipedal motor walking dynamics: An experimental and theoretical study of the dependency on step size] ([https://doi.org/10.5287/bodleian:w4ZwVr6Jg data])
 +
# P. Fonseca, F. Romano, J. S. Schreck, T.E. Ouldridge, J.P.K. Doye and A.A. Louis, ''J. Chem. Phys'' '''148''', 134910 (2018)
 +
#: [https://doi.org/10.1063/1.5019344 Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self assembly] ([http://arxiv.org/abs/1712.02161 arXiv])
 +
# T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P.K. Doye and A.N. Kapanidis, ''Nucleic Acids Res.'' '''47''', 10788–10800 (2019)
 +
#: [http://dx.doi.org/10.1093/nar/gkz797 Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase] ([https://www.biorxiv.org/content/early/2018/02/10/263038 bioRXiv])
 +
# S.R. Tee and Z. Wang, ''ACS Omega'', '''3''', 292-301 (2018)
 +
#: [http://dx.doi.org/10.1021/acsomega.7b01692 How well can DNA rupture DNA? Shearing and unzipping forces inside DNA nanostructures]
 +
# E. Skoruppa, S.K. Nomidis, J.F. Marko and E. Carlon, ''Phys. Rev. Lett.'' '''121''', 088101 (2018)
 +
#: [https://doi.org/10.1103/PhysRevLett.121.088101 Bend-induced twist waves and the structure of nucleosomal DNA] ([http://arxiv.org/abs/1801.10005 arXiv])
 +
# M.M.C. Tortora and J.P.K. Doye, ''Mol. Phys.'' '''116''', 2773-2791 (2018)
 +
#: [http://dx.doi.org/10.1080/00268976.2018.1464226 Incorporating particle flexibility in a density functional description of nematics and cholesterics] ([http://arxiv.org/abs/1801.10601 arXiv])
 +
# O. Henrich, Y.A. Gutierrez-Fosado, T. Curk, T.E. Ouldridge, ''Eur. Phys. J. E'' '''41''', 57 (2018)
 +
#: [http://dx.doi.org/10.1140/epje/i2018-11669-8 Coarse-Grained Simulation of DNA using LAMMPS] ([http://arxiv.org/abs/1802.07145 arXiv])
 +
# M.C. Engel, D. M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis and J.P.K. Doye, ''ACS Nano'' '''12''', 6734-6747 (2018)
 +
#: [http://dx.doi.org/10.1021/acsnano.8b01844 Force-induced unravelling of DNA Origami]
 +
# F. Romano and L. Rovigatti, in ''Design of Self-Assembling Materials'' (Springer, ed. I. Coluzza) pp 71-90 (2017)
 +
#: [http://dx.doi.org/10.1007/978-3-319-71578-0_3 A Nucleotide-Level Computational Approach to DNA-Based Materials]
 +
# S.R. Tee, X. Hu, I.Y. Loh and Z. Wang, ''Phys. Rev. Applied'' '''9''', 034025 (2018)
 +
#: [https://doi.org/10.1103/PhysRevApplied.9.034025 Mechanosensing potentials gate fuel consumption in a bipedal DNA nanowalker]
 +
# E. Locatelli and L. Rovigatti, ''Polymers'' '''10''', 447 (2018)
 +
#: [https://doi.org/10.3390/polym10040447 An Accurate Estimate of the Free Energy and Phase Diagram of All-DNA Bulk Fluids] ([https://www.preprints.org/manuscript/201803.0203/v1 preprints])
 +
# E. Spruijt, S.E. Tusk and H. Bayley, ''Nature Nanotechnology'' '''13''', 739-745 (2018)
 +
#: [http://dx.doi.org/10.1038/s41565-018-0139-6 DNA scaffolds support stable and uniform peptide nanopores]
 +
# L. Coronel, A. Suma and C. Micheletti, ''Nucleic Acids Res.'' '''46''',7522–7532 (2018)
 +
#: [https://doi.org/10.1093/nar/gky523 Dynamics of supercoiled DNA with complex knots: large-scale rearrangements and persistent multi-strand interlocking] ([https://doi.org/10.1101/331314 bioRXiv])
 +
# E. Torelli, J.W. Kozyra, J.-Y. Gu, U. Stimming, L. Piantanida. K. Voitchovsky and N. Krasnogor, ''Scientific Reports'' '''8''', 6989 (2018)
 +
#: [http://dx.doi.org/10.1038/s41598-018-25270-6 Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon ]
 +
# R. Jin and L. Maibaum, ''J. Chem. Phys.'' '''150''', 105103 (2019)
 +
#: [https://doi.org/10.1063/1.5054593 Mechanisms of DNA hybridization: Transition path analysis of a simulation-informed Markov model]([https://arxiv.org/abs/1807.04258 arxiv])
 +
# F. Kriegel, C. Matek, T. Dršata, K. Kulenkampff, S. Tschirpke, M. Zacharias, F. Lankas and J. Lipfert, ''Nucleic Acids Res.'' '''46''', 7998–8009 (2018)
 +
#: [https://doi.org/10.1093/nar/gky599 The temperature dependence of the helical twist of DNA]
 +
# E. Benson, A. Mohammed, D. Rayneau-Kirkhope, A. Gådin, P. Orponen, and B. Högberg, ''ACS Nano'' '''12''', 9291-9299 (2018)
 +
#: [http://dx.doi.org/10.1021/acsnano.8b04148 Effects of Design Choices on the Stiffness of Wireframe DNA Origami Structures]
 +
# S.K. Nomidis, E. Skoruppa,  E. Carlon and J.F. Marko, ''Phys. Rev. E'' '''99''' 032414 (2019).
 +
#: [https://doi.org/10.1103/PhysRevE.99.032414 Twist-bend coupling and the statistical mechanics of the twistable worm-like chain model of DNA: Perturbation theory and beyond] ([https://doi.org/10.1101/422683 bioRXiv],[https://arxiv.org/abs/1809.07050 arXiv])
 +
# B. E. K. Snodin, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ''Nucleic Acids Res.'' '''47''', 1585–1597 (2019).
 +
#: [http://dx.doi.org/10.1093/nar/gky1304 Coarse-grained modelling of the structural properties of DNA origami] ([https://arxiv.org/abs/1809.08430 arXiv]) ([http://dx.doi.org/10.5287/bodleian:8gY5EnYYO data])
 +
# N. E. C. Haley, T. E. Ouldridge, A. Geraldini, A. A. Louis, J. Bath and A. J. Turberfield, ''Nat. Commun'' '''11''', 2562 (2020)
 +
#: [https://doi.org/10.1038/s41467-020-16353-y Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement] ([https://doi.org/10.1101/426668 bioRXiv])
 +
# L. Zhou, A.E. Marras, C.-M. Huang, C.E. Castro and H.-J Su, ''Small'' '''14''', 1802580 (2018)
 +
#: [https://doi.org/10.1002/smll.201802580 Paper origami‐inspired design and actuation of DNA nanomachines with complex motions]
 +
# R. A. Brady, W.T. Kaufhold, N.J. Brooks, V. Foderà and L. Di Michele, ''J. Phys. Condens. Matter'' '''31''', 074003 (2019)
 +
#: [https://doi.org/10.1088/1361-648X/aaf4a1 Flexibility defines structure in crystals of amphiphilic DNA nanostars] ([https://arxiv.org/abs/1810.05761 arXiv])
 +
# F. Hong, S. Jiang, X. Lan, R.P. Narayanan, P. Šulc, F. Zhang, Y. Liu, and H. Yan, ''J. Am. Chem. Soc.'' '''140''', 14670–14676 (2018)
 +
#: [https://doi.org/10.1021/jacs.8b07180 Layered-crossover tiles with precisely tunable angles for 2D and 3D DNA crystal engineering]
 +
# Y. Choi, H. Choi, A.C. Lee, S. Kwon, ''J. Vis. Exp.'', e58364 (2018)
 +
#: [https://doi.org/10.3791/58364 Design and Synthesis of a Reconfigurable DNA Accordion Rack]
 +
# M.M.C. Tortora, G. Mishra, D. Prešern and J.P.K. Doye, ''Sci. Adv.'' '''6''', eaaw8331 (2020)
 +
#: [https://dx.doi.org/10.1126/sciadv.aaw8331 Chiral shape fluctuations and the origin of chirality in cholesteric phases of DNA origamis] ([https://arxiv.org/abs/1811.12331 arXiv])
 +
#  C.-M. Huang,  A. Kucinic, J.V. Le, C.E. Castro and H.-J. Su, ''Nanoscale'' '''11''', 1647-1660 (2019)
 +
#: [https://dx.doi.org/10.1039/C8NR06377J Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis]
 +
# I.T. Hoffecker, S. Chen, A. Gådin, A. Bosco, A.I. Teixeira and B. Högberg, ''Small'' '''15''', 1803628 (2019)
 +
#: [https://doi.org/10.1002/smll.201803628 Solution‐controlled conformational switching of an anchored wireframe DNA nanostructure]
 +
# M. Coraglio, E. Skoruppa and E. Carlon, ''J. Chem. Phys.'' '''150''', 135101 (2019)
 +
#: [https://doi.org/10.1063/1.5084950 Overtwisting induces polygonal shapes in bent DNA] ([https://arxiv.org/abs/1812.03701 arXiv])
 +
# M. Matthies, N.P. Agarwal, E. Poppleton, F.M. Joshi, P. Šulc, and T.L. Schmidt, ''ACS Nano'' '''13''' 1839-1848 (2019)
 +
#: [https://doi.org/10.1021/acsnano.8b08009 Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles]
 +
# Y.A.G. Fosado, Z. Xing, E. Eiser, M. Hudek, O. Henrich, submitted
 +
#: A Numerical Study of Three-Armed DNA Hydrogel Structures ([https://arxiv.org/abs/1903.04186 arXiv])
 +
# W.T. Kaufhold, R.A. Brady, J.M. Tuffnell, P. Cicuta, and L. Di Michele, ''Bioconjugate Chem'' '''30''', 1850-1859 (2019)
 +
#: [https://doi.org/10.1021/acs.bioconjchem.9b00080 Membrane scaffolds enhance the responsiveness and stability of DNA-based sensing circuits]
 +
# S.K. Nomidis, M. Coraglio, M. Laleman, K. Phillips, E. Skoruppa and E. Carlon, ''Phys. Rev. E'' '''100''', 022402 (2019)
 +
#: [https://doi.org/10.1103/PhysRevE.100.022402 Twist-bend coupling, twist waves and DNA loops] ([https://arxiv.org/abs/1904.04677 arXiv])
 +
# A. Suma, A. Stopar, A.W. Nicholson, M. Castronovo, V. Carnevale, ''Nucleic Acids Res.'' '''48''', 4672–4680 (2020)
 +
#: [https://doi.org/10.1093/nar/gkaa080 Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure] ([https://doi.org/10.1101/640847 bioRxiv])
 +
# J. Liu, S. Shukor, S. Li, A. Tamayo, L. Tosi, B. Larman, V. Nanda, W.K. Olson and B. Parekkadan, ''Biomolecules'' '''9''', 199 (2019)
 +
#: [https://doi.org/10.3390/biom9050199 Computational simulation of adapter length-dependent LASSO probe capture efficiency]
 +
# A. Suma, E. Poppleton, M. Matthies, P. Šulc, F. Romano, A.A. Louis, J.P.K. Doye, C. Micheletti, and L. Rovigatti, ''J. Comput. Chem.'' '''40''', 2586-2595 (2019)
 +
#: [http://dx.doi.org/10.1002/jcc.26029 tacoxDNA: a user-friendly web server for simulations of complex DNA structures, from single strands to origami]
 +
# J.F. Berengut, J.C. Berengut, J.P.K. Doye, D. Prešern, A. Kawamoto, J. Ruan, M.J. Wainwright and L.K. Lee,, ''Nucleic Acids Res.'' '''47''', 11963–11975(2019)
 +
#: [https://doi.org/10.1093/nar/gkz1056 Design and synthesis of pleated DNA origami nanotubes with adjustable diameters] ([http://dx.doi.org/10.1101/534792 bioRxiv])
 +
# K.G. Young, B. Najafi, W.M. Sant, S. Contera, A.A. Louis, J.P.K. Doye, A.J. Turberfield and J. Bath, ''Angew. Chem. Int. Ed.'' '''59''', 15942-15946 (2020)
 +
#: [https://doi.org/10.1002/anie.202006281 Reconfigurable T-junction DNA origami]
 +
# I.D. Stoev, T. Cao, A. Caciagli, J. Yu, C. Ness, R. Liu, R. Ghosh, T. O'Neill, D. Liu and E. Eiser, ''Soft Matter'' '''16''', 990-1001 (2020)
 +
#: [http://dx.doi.org/10.1039/C9SM01398A On the Role of Flexibility in Linker-Mediated DNA Hydrogels] ([https://arxiv.org/abs/1909.05611 arXiv])
 +
# E. Benson, M. Lolaico, Y. Tarasov, A. Gådin and B. Högberg, ''ACS Nano'' '''13''', 12591-12598 (2019)
 +
#: [https://doi.org/10.1021/acsnano.9b03473 Evolutionary Refinement of DNA Nanostructures Using Coarse-Grained Molecular Dynamics Simulations]
 +
# S.W. Shin, S.Y. Ahn, Y.T. Lim and S.H. Um, ''Anal. Chem.'' '''91''',  14808-14811 (2019)
 +
#: [https://doi.org/10.1021/acs.analchem.9b03173 Improved Sensitivity of Intramolecular Strand Displacement Based on Localization of Probes]
 +
# Z. Shi and G. Arya, ''Nucleic Acids Research'' '''48''', 548-560 (2020)
 +
#: [https://doi.org/10.1093/nar/gkz1137 Free energy landscape of salt-actuated reconfigurable DNA nanodevices]
 +
# E. Torelli, J.W. Kozyra, B. Shirt-Ediss, L. Piantanida, K. Voïtchovsky, N. Krasnogor, ''ACS Synth. Biol.'' '''9''', 1682-1692 (2020)
 +
#: [https://doi.org/10.1021/acssynbio.0c00009 Co-transcriptional folding of a bio-orthogonal fluorescent scaffolded RNA origami] ([https://doi.org/10.1101/864678 bioRxiv])
 +
# P.R Desai, S. Brahmachari, J.F. Marko, S. Das, K.C. Neuman, submitted
 +
#: Coarse-Grained Modeling of DNA Plectoneme Formation in the Presence of Base-Pair Mismatches ([https://doi.org/10.1101/2019.12.20.885533 bioRxiv])
 +
# K. Bartnik, A. Barth, M. Pilo-Pais, A.H. Crevenna, T. Liedl and D.C. Lamb, ''J. Am. Chem. Soc'' '''142''', 815-825 (2020).
 +
#:[https://doi.org/10.1021/jacs.9b09093 A DNA origami platform for single-pair Förster resonance energy transfer investigation of DNA–DNA interactions and ligation]
 +
# E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang and P. Šulc, ''Nucleic Acids Res.'' '''48''', e72 (2020)
 +
#: [https://doi.org/10.1093/nar/gkaa417 Design, optimization, and analysis of large DNA and RNA nanostructures through interactive visualization, editing, and molecular simulation] ([https://doi.org/10.1101/2020.01.24.917419 bioRxiv])
 +
# M.C. Engel, F. Romano, A.A. Louis and J.P.K. Doye, ''J. Chem. Theor. Comput.'' '''16''', accepted (2020).
 +
#: [https://doi.org/10.1021/acs.jctc.0c00286 Measuring internal forces in single-stranded DNA: Application to a DNA force clamp] ([http://arxiv.org/abs/arXiv:2007.13865 arXiv])
 +
# C. Bores and B.M. Pettitt, ''Phys. Rev. E'' '''101''', 012406 (2020)
 +
#: [https://doi.org/10.1103/PhysRevE.101.012406 Structure and the role of filling rate on model dsDNA packed in a phage capsid]
 +
# A. Bader and S.L. Cockroft, ''Chem. Commun.'' '''56''', 5135-5138 (2020)
 +
#: [https://doi.org/10.1039/D0CC00882F Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices]
 +
# J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck and M.C. Engel, M. Matthies, E. Benson, E. Poppleton and B.E.K. Snodin, ''Methods in Molecular Biology'', submitted.
 +
#: The oxDNA coarse-grained model as a tool to simulate DNA origami ([http://arxiv.org/abs/2004.05052 arXiv]) ([http://dx.doi.org/10.5287/bodleian:vgqKg0rYo data])
 +
# J. Lee, J.-H. Huh, S. Lee, ''Langmuir'' '''36''', 5118–5125 (2020)
 +
#: [https://doi.org/10.1021/acs.langmuir.0c00239 DNA Base Pair-Stacking Crystallization of Gold Colloids]
 +
# A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, submitted
 +
#: Repeat DNA-PAINT suppresses background and non-specific signals in optical nanoscopy ([https://doi.org/10.1101/2020.04.24.059410 bioRxiv])
 +
# B. Najafi, K.G. Young, J. Bath, A.A. Louis, J.P.K. Doye and A.J. Turberfield, submitted
 +
#: Characterising DNA T-motifs by simulation and experiment ([https://arxiv.org/abs/2005.11545 arXiv])
 +
# C.M. Huang, A. Kucinic, J.A. Johnson, H.-J. Su, C.E. Castro, submitted
 +
#: Integrating computer-aided engineering and computer-aided design for DNA assemblies ([https://doi.org/10.1101/2020.05.28.119701 bioRxiv])
 +
# P. Irmisch, T.E. Ouldridge, and R. Seidel, ''J. Am. Chem. Soc'' '''142''', 11451–11463 (2020)
 +
#: [https://doi.org/10.1021/jacs.0c03105 Modelling DNA-strand displacement reactions in the presence of base-pair mismatches]
 +
# F. Hong, J.S. Schreck and P. Šulc, ''Nucleic Acids Res.'' '''48''', 10726–10738 (2020).
 +
#: [https://doi.org/10.1093/nar/gkaa854 Understanding DNA interactions in crowded environments with a coarse-grained model] ([https://doi.org/10.1101/2020.06.08.140434 bioRxiv])
 +
# A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, ''J. Am. Chem. Soc.'' '''142''', 12069–12078 (2020)
 +
#: [https://doi.org/10.1021/jacs.9b03418 Detecting nanoscale distribution of protein pairs by proximity dependent super-resolution microscopy] ([https://doi.org/10.1101/591081 bioRxiv])
 +
# H. Chhabra, G. Mishra, Y. Cao, D. Prešern, E. Skoruppa, M.M.C. Tortora and J.P.K. Doye, ''J. Chem. Theor. Comput.'' accepted.
 +
#: [https://dx.doi.org/10.1021/acs.jctc.0c00661 Computing the elastic mechanical properties of rod-like DNA nanostructures] ([http://arXiv.org arXiv])
 +
# K. Tapio, A. Mostafa, Y. Kanehira, A. Suma, A. Dutta, I. Bald, submitted
 +
#: A versatile DNA origami based plasmonic nanoantenna for label-free single-molecule SERS ([https://doi.org/10.21203/rs.3.rs-47458/v1 Research Square])
 +
# E.G. Noya, C.K. Wong, P. Llombart and J.P.K. Doye, submitted
 +
#: How to design an icosahedral quasicrystal through directional bonding
 +
# Y.A.G. Fosado, F. Landuzzi and T. Sakaue, submitted
 +
#: Twist dynamics and buckling instability of ring DNA: Effect of groove asymmetry and anisotropic bending ([https://arxiv.org/abs/2008.05686 arXiv])
 +
# F. Spinozzi, M.G. Ortore, G. Nava, F. Bomboi, F. Carducci, H. Amenitsch, T. Bellini, F. Sciortino, and P. Mariani, ''Langmuir'' '''36''', 10387–10396 (2020)
 +
#: [https://doi.org/10.1021/acs.langmuir.0c01520 Gelling without structuring: a SAXS study of the interactions among DNA nanostars]
 +
# J. Huang  A. Suma, M. Cui, G. Grundmeier, V. Carnevale, Y. Zhang, C. Kielar and A. Keller, ''Small Str.'' '''1''', 2000038 (2020)
 +
#: [https://doi.org/10.1002/sstr.202000038 Arranging small molecules with sub‐nanometer precision on DNA origami substrates for the single‐molecule investigation of protein‐ligand interactions]
 +
# G. Yao, F. Zhang, F. Wang, T. Peng, H. Liu, E. Poppleton, P. Šulc, S. Jiang, L. Liu, C. Gong, X. Jing, X. Liu, L. Wang, Y. Liu, C. Fan and H. Yan, ''Nat. Chem.'' '''12''', 1067–1075 (2020)
 +
#: [https://doi.org/10.1038/s41557-020-0539-8 Meta-DNA structures]
 +
# J.F. Berengut, C.K. Wong, J.C. Berengut, J.P.K. Doye, T.E. Ouldridge and L.K. Lee, ''ACS Nano'' accepted
 +
#: [http://dx.doi.org/10.1021/acsnano.0c07696 Self-limiting polymerization of DNA origami subunits with strain accumulation]
 +
# J. Procyk, E. Poppleton and  P. Šulc, submitted
 +
#: Coarse-grained nucleic acid-protein model for hybrid nanotechnology ([https://arxiv.org/abs/2009.09589 arXiv])
 +
# Z. Sierzega, J. Wereszczynski and C. Prior, submitted
 +
#: WASP: A software package for correctly characterizing the topological development of ribbon structures ([https://doi.org/10.1101/2020.09.17.301309 bioRXiv])
 +
# E. Skoruppa, A. Voorspoels, J. Vreede and E. Carlon, submitted
 +
#: Length scale dependent elasticity in DNA from coarse-grained and all-atom models ([https://arxiv.org/abs/2010.01302 arXiv])
 +
# C. Bores, M. Woodson, M.C. Morais, and B. Montgomery Pettitt, ''J. Phys. Chem. B'' accepted (2020)
 +
#: [https://doi.org/10.1021/acs.jpcb.0c07478 Effects of model shape, volume, and softness of the capsid for DNA packaging of phi29]
 +
# E. Lattuada, D. Caprara, V. Lamberti, F. Sciortino, submitted
 +
#: Hyperbranched DNA clusters ([https://arxiv.org/abs/2011.07854 arXiv])
 +
# B.J.H.M. Rosier, A.J. Markvoort, B. Gumí Audenis, J.A.L. Roodhuizen, A. den Hamer, L. Brunsveld & T.F.A. de Greef, ''Nat. Catal.'' '''3''', 295–306(2020)
 +
#: [https://doi.org/10.1038/s41929-019-0403-7 Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome]
 +
 
 +
We are also maintaining a list of all published papers using oxDNA at [https://publons.com/researcher/3051012/oxdna-oxrna/ publons].

Latest revision as of 17:57, 23 November 2020

  1. T. E. Ouldridge, A. A. Louis and J. P. K. Doye, Phys. Rev. Lett. 104, 178101 (2010)
    DNA Nanotweezers Studied with a Coarse-Grained Model of DNA (arXiv)
  2. T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Phys. Condens. Matter. 22, 104102 (2010)
    Extracting bulk properties of self-assembling systems from small simulations (arXiv)
  3. T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Chem. Phys, 134, 085101 (2011)
    Structural, mechanical and thermodynamic properties of a coarse-grained DNA model (arXiv)
  4. T. E. Ouldridge, D.Phil. Thesis, University of Oxford, 2011.
    Coarse-grained modelling of DNA and DNA self-assembly
  5. F. Romano, A. Hudson, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 136, 215102 (2012)
    The effect of topology on the structure and free energy landscape of DNA kissing complexes (arXiv)
  6. C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, Soft Matter 8, 8388 (2012)
    Self-assembly of short DNA duplexes: from a coarse-grained model to experiments through a theoretical link (arXiv)
  7. C. Matek, T. E. Ouldridge, A. Levy, J. P. K. Doye, A. A. Louis, J. Phys. Chem. B 116, 1161-11625 (2012)
    DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism (arXiv)
  8. P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 137, 135101 (2012)
    Sequence-dependent thermodynamics of a coarse-grained DNA model (arxiv)
  9. T.E. Ouldridge, J. Chem. Phys. 137, 144105 (2012)
    Inferring bulk self-assembly properties from simulations of small systems with multiple constituent species and small systems in the grand canonical ensemble (arXiv)
  10. F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 138, 085101 (2013)
    Coarse-grained simulations of DNA overstretching (arXiv)
  11. T. E. Ouldridge, R. L. Hoare, A. A. Louis, J. P. K. Doye, J. Bath, A. J. Turberfield, ACS Nano 7, 2479-2490 (2013)
    Optimizing DNA nanotechnology through coarse-grained modelling: a two-footed DNA walker
  12. T. E. Ouldridge, P. Šulc, F. Romano, J. P. K. Doye, A. A. Louis, Nucleic Acids Res. 41, 8886-8895 (2013)
    DNA hybridization kinetics: zippering, internal displacement and sequence dependence (arXiv)
  13. J.P.K. Doye, T. E. Ouldridge, A. A. Louis, F. Romano, P. Šulc, C. Matek, B.E.K. Snodin, L. Rovigatti, J. S. Schreck, R.M. Harrison, W.P.J. Smith, Phys. Chem. Chem. Phys 15, 20395-20414 (2013)
    Coarse-graining DNA for simulations of DNA nanotechnology (arXiv)
  14. N. Srinivas, T. E. Ouldridge, P. Šulc, J. M. Schaeffer, B. Yurke, A. A. Louis, J. P. K. Doye, E. Winfree, Nucleic Acids Res. 41, 10641-10658 (2013)
    On the biophysics and kinetics of toehold-mediated DNA strand displacement
  15. P. Šulc, T. E. Ouldridge, F. Romano, J. P. K. Doye, A. A. Louis, Natural Computing 13, 535 (2014)
    Simulating a burnt-bridges DNA motor with a coarse-grained DNA model (arXiv)
  16. L. Rovigatti, F. Bomboi, F. Sciortino, J. Chem. Phys. 140, 154903 (2014)
    Accurate phase diagram of tetravalent DNA nanostars (arXiv)
  17. P. Šulc, F. Romano, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 140, 235102 (2014)
    A nucleotide-level coarse-grained model of RNA (arXiv)
  18. L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ACS Nano 8, 3567-3574 (2014)
    Gels of DNA Nanostars Never Crystallise
  19. Q. Wang, B. M. Pettitt, Biophys. J. 106, 1182–1193 (2014)
    Modeling DNA Thermodynamics under Torsional Stress
  20. J. S. Schreck, T. E. Ouldridge, F. Romano, P. Šulc, L. Shaw, A. A. Louis, J.P.K. Doye, Nucleic Acids Res. 43, 6181-6190 (2014)
    DNA hairpins primarily promote duplex melting rather than inhibiting hybridization (arXiv)
  21. R. Machinek, T.E. Ouldridge, N.E.C. Haley, J. Bath, A. J. Turberfield, Nature Comm. 5, 5324 (2014)
    Programmable energy landscapes for kinetic control of DNA strand displacement
  22. M. Mosayebi, F. Romano, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, J. Phys. Chem. B 118, 14326-14335 (2014)
    The role of loop stacking in the dynamics of DNA hairpin formation (arXiv)
  23. I. Y. Loh, J.Cheng, S. R. Tee, A. Efremov, and Z. Wang, ACS Nano 8, 10293–10304 (2014)
    From bistate molecular switches to self-directed track-walking nanomotors
  24. C. Matek, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, Sci. Rep., 5, 7655 (2015)
    Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA (arXiv)
  25. L. Rovigatti, P. Šulc, I. Reguly, F. Romano, J. Comput. Chem., 36, 1-8 (2015)
    A comparison between parallelization approaches in molecular dynamics simulations on GPUs (arXiv)
  26. P. Krstić, B. Ashcroft and S. Lindsay, Nanotechnology, 26, 084001 (2015)
    Physical model for recognition tunneling
  27. F. Romano and F. Sciortino, Phys. Rev. Lett. 114, 078104 (2015)
    Switching Bonds in a DNA Gel: An All-DNA Vitrimer
  28. J. S. Schreck, T. E. Ouldridge, F. Romano, A. A. Louis, J.P.K. Doye, J. Chem. Phys. 142, 165101 (2015)
    Characterizing the bending and flexibility induced by bulges in DNA duplexes (arXiv)
  29. M. Mosayebi, A. A. Louis, J.P.K. Doye, T. E. Ouldridge ACS Nano 9, 11993 (2015)
    Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors (arXiv)
  30. T. E. Ouldridge, Mol. Phys. 113, 1-15 (2015)
    DNA nanotechnology: understanding and optimisation through simulation (arXiv)
  31. P. Šulc, T. E. Ouldridge, F. Romano, J.P.K. Doye, A. A. Louis, Biophys. J. 108, 1238-1247 (2015)
    Modelling toehold-mediated RNA strand displacement (arXiv)
  32. B. E. K. Snodin, F. Randisi, M. Mosayebi, P. Šulc, J. S. Schreck, F. Romano, T. E. Ouldridge, R. Tsukanov, E. Nir, A. A. Louis, J. P. K. Doye, J. Chem. Phys. 142, 234901 (2015)
    Introducing Improved Structural Properties and Salt Dependence into a Coarse-Grained Model of DNA (arXiv)
  33. C. Matek, P. Šulc, F. Randisi, J.P.K. Doye, A. A. Louis, J. Chem. Phys. 143, 243122 (2015)
    Coarse-grained modelling of supercoiled RNA (arXiv)
  34. Q. Wang, C.G. Myers, and B.M. Pettitt, J. Phys. Chem. B 119, 4937–4943 (2015)
    Twist-induced defects of the P-SSP7 genome revealed by modeling the cryo-EM density
  35. R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, arXiv (2015)
    Coarse-grained modelling of strong DNA bending I: Thermodynamics and comparison to an experimental "molecular vice"
  36. R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, J. Chem. Theor. Comput. 15 4660-4672 (2019)
    Identifying physical causes of apparent enhanced cyclization of short DNA molecules with a coarse-grained model (arXiv) (data)
  37. J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, Science 349, 977-981 (2015)
    Base triplet stepping by the Rad51/RecA family of recombinases
  38. B. E. K. Snodin, F. Romano, L. Rovigatti, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ACS Nano 10, 1724-1737 (2016)
    Direct Simulation of the Self-Assembly of a Small DNA Origami (data)
  39. V. Kočar, J. S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J. P. K. Doye, and R. Jerala, Nat. Commun. 7, 10803 (2016)
    Design principles for rapid folding of knotted DNA nanostructures
  40. J. S. Schreck, F. Romano, M.H. Zimmer, A.A. Louis and J.P.K. Doye, ACS Nano, 10, 4236-4247 (2016)
    Characterizing DNA star-tile-based nanostructures using a coarse-grained model
  41. M. Liu, J. Cheng, S.R. Tee, S. Sreelatha, I.Y. Loh, and Z. Wang, ACS Nano, 10, 5882–5890 (2016)
    Biomimetic autonomous enzymatic nanowalker of high fuel efficiency
  42. J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, L. Comez, L. Porcar, C.J. Jafta, G.C. Fadda, T. Bellini and F. Sciortino, J. Chem. Phys. 145, 084910 (2016)
    Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars
  43. T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, Nucleic Acids Res. 44, 9121-9130 (2016)
    Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation
  44. Q. Wang and B.M. Pettitt, J. Phys. Chem. Lett 7, 1042–1046 (2016)
    Sequence affects the cyclization of DNA minicircles
  45. A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, J. Phys: Condens. Matter 29, 014006 (2017).
    Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal (arXiv) (data)
  46. E. Locatelli, P. H. Handle, C. N. Likos, F. Sciortino and L. Rovigatti, ACS Nano 11, 2094-2102 (2017)
    Condensation and demixing in solutions of DNA nanostars and their mixtures
  47. E. Skoruppa, M. Laleman, S. Nomidis, E. Carlon, J. Chem. Phys 146, 214902 (2017)
    DNA elasticity from coarse-grained simulations: the effect of groove asymmetry (arXiv)
  48. A. Suma and C. Micheletti, Proc. Natl. Acad. Sci. USA 114, E2991–E2997 (2017)
    Pore translocation of knotted DNA rings
  49. Z. Shi, C. E. Castro and G. Arya, ACS Nano 11, 4617–4630 (2017)
    Conformational dynamics of mechanically compliant DNA nanostructures from coarse-grained molecular dynamics simulations
  50. H. Yagyu, J.-Y. Lee, D.-N. Kim, and O. Tabata, J. Phys. Chem. B 121, 5033–5039 (2017)
    Coarse-grained molecular dynamics model of double-stranded DNA for DNA nanostructure design
  51. S. Vangaveti, R. J. D'Esposito, J. L. Lippens, D. Fabris and S. V. Ranganathan, Phys. Chem. Chem. Phys. 19, 14937-14946 (2017)
    A coarse-grained model for assisting the investigation of structure and dynamics of large nucleic acids by ion mobility spectrometry–mass spectrometry
  52. A. Henning-Knechtel, J. Knechtel and M. Magzoub, Nucleic Acids Res. 45, 12057–12068 (2017)
    DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels
  53. R. Sharma, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ACS Nano 11, 12426–12435 (2017)
    Characterizing the motion of jointed DNA nanostructures using a coarse-grained model
  54. Q.Y. Yeo, I.Y. Loh, S.R. Tee, Y.H. Chiang, J. Cheng, M.H. Liu and Z.S. Wang, Nanoscale 9, 12142-12149 (2017)
    A DNA bipedal nanowalker with a piston-like expulsion stroke
  55. Q. Wang, R.N. Irobalieva, W. Chiu, M.F. Schmid, J.M. Fogg, L. Zechiedrich, B.M. Pettitt, Nucleic Acids Res. 45 7633-7642 (2017)
    Influence of DNA sequence on the structure of minicircles under torsional stress
  56. B. Joffroy, Y.O. Uca, D. Prešern, J.P.K. Doye and T.L. Schmidt, Nucleic Acids Res. 46, 538-545 (2018)
    Rolling circle amplification shows a sinusoidal template length-dependent amplification bias (data)
  57. R.V. Reshetnikov, A.V. Stolyarova, A.O. Zalevsky, D.Y. Panteleev, G.V. Pavlova, D.V. Klinov, A.V. Golovin, A.D. Protopopova, Nucleic Acids Res. 46, 1102–1112 (2018)
    A coarse-grained model for DNA origami
  58. D.C. Khara, J.S. Schreck, T.E. Tomov, Y. Berger, T.E. Ouldridge, J.P.K. Doye and E. Nir, Nucleic Acids Res. 46, 1553-1561 (2018)
    DNA bipedal motor walking dynamics: An experimental and theoretical study of the dependency on step size (data)
  59. P. Fonseca, F. Romano, J. S. Schreck, T.E. Ouldridge, J.P.K. Doye and A.A. Louis, J. Chem. Phys 148, 134910 (2018)
    Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self assembly (arXiv)
  60. T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P.K. Doye and A.N. Kapanidis, Nucleic Acids Res. 47, 10788–10800 (2019)
    Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase (bioRXiv)
  61. S.R. Tee and Z. Wang, ACS Omega, 3, 292-301 (2018)
    How well can DNA rupture DNA? Shearing and unzipping forces inside DNA nanostructures
  62. E. Skoruppa, S.K. Nomidis, J.F. Marko and E. Carlon, Phys. Rev. Lett. 121, 088101 (2018)
    Bend-induced twist waves and the structure of nucleosomal DNA (arXiv)
  63. M.M.C. Tortora and J.P.K. Doye, Mol. Phys. 116, 2773-2791 (2018)
    Incorporating particle flexibility in a density functional description of nematics and cholesterics (arXiv)
  64. O. Henrich, Y.A. Gutierrez-Fosado, T. Curk, T.E. Ouldridge, Eur. Phys. J. E 41, 57 (2018)
    Coarse-Grained Simulation of DNA using LAMMPS (arXiv)
  65. M.C. Engel, D. M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis and J.P.K. Doye, ACS Nano 12, 6734-6747 (2018)
    Force-induced unravelling of DNA Origami
  66. F. Romano and L. Rovigatti, in Design of Self-Assembling Materials (Springer, ed. I. Coluzza) pp 71-90 (2017)
    A Nucleotide-Level Computational Approach to DNA-Based Materials
  67. S.R. Tee, X. Hu, I.Y. Loh and Z. Wang, Phys. Rev. Applied 9, 034025 (2018)
    Mechanosensing potentials gate fuel consumption in a bipedal DNA nanowalker
  68. E. Locatelli and L. Rovigatti, Polymers 10, 447 (2018)
    An Accurate Estimate of the Free Energy and Phase Diagram of All-DNA Bulk Fluids (preprints)
  69. E. Spruijt, S.E. Tusk and H. Bayley, Nature Nanotechnology 13, 739-745 (2018)
    DNA scaffolds support stable and uniform peptide nanopores
  70. L. Coronel, A. Suma and C. Micheletti, Nucleic Acids Res. 46,7522–7532 (2018)
    Dynamics of supercoiled DNA with complex knots: large-scale rearrangements and persistent multi-strand interlocking (bioRXiv)
  71. E. Torelli, J.W. Kozyra, J.-Y. Gu, U. Stimming, L. Piantanida. K. Voitchovsky and N. Krasnogor, Scientific Reports 8, 6989 (2018)
    Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon
  72. R. Jin and L. Maibaum, J. Chem. Phys. 150, 105103 (2019)
    Mechanisms of DNA hybridization: Transition path analysis of a simulation-informed Markov model(arxiv)
  73. F. Kriegel, C. Matek, T. Dršata, K. Kulenkampff, S. Tschirpke, M. Zacharias, F. Lankas and J. Lipfert, Nucleic Acids Res. 46, 7998–8009 (2018)
    The temperature dependence of the helical twist of DNA
  74. E. Benson, A. Mohammed, D. Rayneau-Kirkhope, A. Gådin, P. Orponen, and B. Högberg, ACS Nano 12, 9291-9299 (2018)
    Effects of Design Choices on the Stiffness of Wireframe DNA Origami Structures
  75. S.K. Nomidis, E. Skoruppa, E. Carlon and J.F. Marko, Phys. Rev. E 99 032414 (2019).
    Twist-bend coupling and the statistical mechanics of the twistable worm-like chain model of DNA: Perturbation theory and beyond (bioRXiv,arXiv)
  76. B. E. K. Snodin, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, Nucleic Acids Res. 47, 1585–1597 (2019).
    Coarse-grained modelling of the structural properties of DNA origami (arXiv) (data)
  77. N. E. C. Haley, T. E. Ouldridge, A. Geraldini, A. A. Louis, J. Bath and A. J. Turberfield, Nat. Commun 11, 2562 (2020)
    Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement (bioRXiv)
  78. L. Zhou, A.E. Marras, C.-M. Huang, C.E. Castro and H.-J Su, Small 14, 1802580 (2018)
    Paper origami‐inspired design and actuation of DNA nanomachines with complex motions
  79. R. A. Brady, W.T. Kaufhold, N.J. Brooks, V. Foderà and L. Di Michele, J. Phys. Condens. Matter 31, 074003 (2019)
    Flexibility defines structure in crystals of amphiphilic DNA nanostars (arXiv)
  80. F. Hong, S. Jiang, X. Lan, R.P. Narayanan, P. Šulc, F. Zhang, Y. Liu, and H. Yan, J. Am. Chem. Soc. 140, 14670–14676 (2018)
    Layered-crossover tiles with precisely tunable angles for 2D and 3D DNA crystal engineering
  81. Y. Choi, H. Choi, A.C. Lee, S. Kwon, J. Vis. Exp., e58364 (2018)
    Design and Synthesis of a Reconfigurable DNA Accordion Rack
  82. M.M.C. Tortora, G. Mishra, D. Prešern and J.P.K. Doye, Sci. Adv. 6, eaaw8331 (2020)
    Chiral shape fluctuations and the origin of chirality in cholesteric phases of DNA origamis (arXiv)
  83. C.-M. Huang, A. Kucinic, J.V. Le, C.E. Castro and H.-J. Su, Nanoscale 11, 1647-1660 (2019)
    Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis
  84. I.T. Hoffecker, S. Chen, A. Gådin, A. Bosco, A.I. Teixeira and B. Högberg, Small 15, 1803628 (2019)
    Solution‐controlled conformational switching of an anchored wireframe DNA nanostructure
  85. M. Coraglio, E. Skoruppa and E. Carlon, J. Chem. Phys. 150, 135101 (2019)
    Overtwisting induces polygonal shapes in bent DNA (arXiv)
  86. M. Matthies, N.P. Agarwal, E. Poppleton, F.M. Joshi, P. Šulc, and T.L. Schmidt, ACS Nano 13 1839-1848 (2019)
    Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles
  87. Y.A.G. Fosado, Z. Xing, E. Eiser, M. Hudek, O. Henrich, submitted
    A Numerical Study of Three-Armed DNA Hydrogel Structures (arXiv)
  88. W.T. Kaufhold, R.A. Brady, J.M. Tuffnell, P. Cicuta, and L. Di Michele, Bioconjugate Chem 30, 1850-1859 (2019)
    Membrane scaffolds enhance the responsiveness and stability of DNA-based sensing circuits
  89. S.K. Nomidis, M. Coraglio, M. Laleman, K. Phillips, E. Skoruppa and E. Carlon, Phys. Rev. E 100, 022402 (2019)
    Twist-bend coupling, twist waves and DNA loops (arXiv)
  90. A. Suma, A. Stopar, A.W. Nicholson, M. Castronovo, V. Carnevale, Nucleic Acids Res. 48, 4672–4680 (2020)
    Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure (bioRxiv)
  91. J. Liu, S. Shukor, S. Li, A. Tamayo, L. Tosi, B. Larman, V. Nanda, W.K. Olson and B. Parekkadan, Biomolecules 9, 199 (2019)
    Computational simulation of adapter length-dependent LASSO probe capture efficiency
  92. A. Suma, E. Poppleton, M. Matthies, P. Šulc, F. Romano, A.A. Louis, J.P.K. Doye, C. Micheletti, and L. Rovigatti, J. Comput. Chem. 40, 2586-2595 (2019)
    tacoxDNA: a user-friendly web server for simulations of complex DNA structures, from single strands to origami
  93. J.F. Berengut, J.C. Berengut, J.P.K. Doye, D. Prešern, A. Kawamoto, J. Ruan, M.J. Wainwright and L.K. Lee,, Nucleic Acids Res. 47, 11963–11975(2019)
    Design and synthesis of pleated DNA origami nanotubes with adjustable diameters (bioRxiv)
  94. K.G. Young, B. Najafi, W.M. Sant, S. Contera, A.A. Louis, J.P.K. Doye, A.J. Turberfield and J. Bath, Angew. Chem. Int. Ed. 59, 15942-15946 (2020)
    Reconfigurable T-junction DNA origami
  95. I.D. Stoev, T. Cao, A. Caciagli, J. Yu, C. Ness, R. Liu, R. Ghosh, T. O'Neill, D. Liu and E. Eiser, Soft Matter 16, 990-1001 (2020)
    On the Role of Flexibility in Linker-Mediated DNA Hydrogels (arXiv)
  96. E. Benson, M. Lolaico, Y. Tarasov, A. Gådin and B. Högberg, ACS Nano 13, 12591-12598 (2019)
    Evolutionary Refinement of DNA Nanostructures Using Coarse-Grained Molecular Dynamics Simulations
  97. S.W. Shin, S.Y. Ahn, Y.T. Lim and S.H. Um, Anal. Chem. 91, 14808-14811 (2019)
    Improved Sensitivity of Intramolecular Strand Displacement Based on Localization of Probes
  98. Z. Shi and G. Arya, Nucleic Acids Research 48, 548-560 (2020)
    Free energy landscape of salt-actuated reconfigurable DNA nanodevices
  99. E. Torelli, J.W. Kozyra, B. Shirt-Ediss, L. Piantanida, K. Voïtchovsky, N. Krasnogor, ACS Synth. Biol. 9, 1682-1692 (2020)
    Co-transcriptional folding of a bio-orthogonal fluorescent scaffolded RNA origami (bioRxiv)
  100. P.R Desai, S. Brahmachari, J.F. Marko, S. Das, K.C. Neuman, submitted
    Coarse-Grained Modeling of DNA Plectoneme Formation in the Presence of Base-Pair Mismatches (bioRxiv)
  101. K. Bartnik, A. Barth, M. Pilo-Pais, A.H. Crevenna, T. Liedl and D.C. Lamb, J. Am. Chem. Soc 142, 815-825 (2020).
    A DNA origami platform for single-pair Förster resonance energy transfer investigation of DNA–DNA interactions and ligation
  102. E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang and P. Šulc, Nucleic Acids Res. 48, e72 (2020)
    Design, optimization, and analysis of large DNA and RNA nanostructures through interactive visualization, editing, and molecular simulation (bioRxiv)
  103. M.C. Engel, F. Romano, A.A. Louis and J.P.K. Doye, J. Chem. Theor. Comput. 16, accepted (2020).
    Measuring internal forces in single-stranded DNA: Application to a DNA force clamp (arXiv)
  104. C. Bores and B.M. Pettitt, Phys. Rev. E 101, 012406 (2020)
    Structure and the role of filling rate on model dsDNA packed in a phage capsid
  105. A. Bader and S.L. Cockroft, Chem. Commun. 56, 5135-5138 (2020)
    Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices
  106. J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck and M.C. Engel, M. Matthies, E. Benson, E. Poppleton and B.E.K. Snodin, Methods in Molecular Biology, submitted.
    The oxDNA coarse-grained model as a tool to simulate DNA origami (arXiv) (data)
  107. J. Lee, J.-H. Huh, S. Lee, Langmuir 36, 5118–5125 (2020)
    DNA Base Pair-Stacking Crystallization of Gold Colloids
  108. A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, submitted
    Repeat DNA-PAINT suppresses background and non-specific signals in optical nanoscopy (bioRxiv)
  109. B. Najafi, K.G. Young, J. Bath, A.A. Louis, J.P.K. Doye and A.J. Turberfield, submitted
    Characterising DNA T-motifs by simulation and experiment (arXiv)
  110. C.M. Huang, A. Kucinic, J.A. Johnson, H.-J. Su, C.E. Castro, submitted
    Integrating computer-aided engineering and computer-aided design for DNA assemblies (bioRxiv)
  111. P. Irmisch, T.E. Ouldridge, and R. Seidel, J. Am. Chem. Soc 142, 11451–11463 (2020)
    Modelling DNA-strand displacement reactions in the presence of base-pair mismatches
  112. F. Hong, J.S. Schreck and P. Šulc, Nucleic Acids Res. 48, 10726–10738 (2020).
    Understanding DNA interactions in crowded environments with a coarse-grained model (bioRxiv)
  113. A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, J. Am. Chem. Soc. 142, 12069–12078 (2020)
    Detecting nanoscale distribution of protein pairs by proximity dependent super-resolution microscopy (bioRxiv)
  114. H. Chhabra, G. Mishra, Y. Cao, D. Prešern, E. Skoruppa, M.M.C. Tortora and J.P.K. Doye, J. Chem. Theor. Comput. accepted.
    Computing the elastic mechanical properties of rod-like DNA nanostructures (arXiv)
  115. K. Tapio, A. Mostafa, Y. Kanehira, A. Suma, A. Dutta, I. Bald, submitted
    A versatile DNA origami based plasmonic nanoantenna for label-free single-molecule SERS (Research Square)
  116. E.G. Noya, C.K. Wong, P. Llombart and J.P.K. Doye, submitted
    How to design an icosahedral quasicrystal through directional bonding
  117. Y.A.G. Fosado, F. Landuzzi and T. Sakaue, submitted
    Twist dynamics and buckling instability of ring DNA: Effect of groove asymmetry and anisotropic bending (arXiv)
  118. F. Spinozzi, M.G. Ortore, G. Nava, F. Bomboi, F. Carducci, H. Amenitsch, T. Bellini, F. Sciortino, and P. Mariani, Langmuir 36, 10387–10396 (2020)
    Gelling without structuring: a SAXS study of the interactions among DNA nanostars
  119. J. Huang A. Suma, M. Cui, G. Grundmeier, V. Carnevale, Y. Zhang, C. Kielar and A. Keller, Small Str. 1, 2000038 (2020)
    Arranging small molecules with sub‐nanometer precision on DNA origami substrates for the single‐molecule investigation of protein‐ligand interactions
  120. G. Yao, F. Zhang, F. Wang, T. Peng, H. Liu, E. Poppleton, P. Šulc, S. Jiang, L. Liu, C. Gong, X. Jing, X. Liu, L. Wang, Y. Liu, C. Fan and H. Yan, Nat. Chem. 12, 1067–1075 (2020)
    Meta-DNA structures
  121. J.F. Berengut, C.K. Wong, J.C. Berengut, J.P.K. Doye, T.E. Ouldridge and L.K. Lee, ACS Nano accepted
    Self-limiting polymerization of DNA origami subunits with strain accumulation
  122. J. Procyk, E. Poppleton and P. Šulc, submitted
    Coarse-grained nucleic acid-protein model for hybrid nanotechnology (arXiv)
  123. Z. Sierzega, J. Wereszczynski and C. Prior, submitted
    WASP: A software package for correctly characterizing the topological development of ribbon structures (bioRXiv)
  124. E. Skoruppa, A. Voorspoels, J. Vreede and E. Carlon, submitted
    Length scale dependent elasticity in DNA from coarse-grained and all-atom models (arXiv)
  125. C. Bores, M. Woodson, M.C. Morais, and B. Montgomery Pettitt, J. Phys. Chem. B accepted (2020)
    Effects of model shape, volume, and softness of the capsid for DNA packaging of phi29
  126. E. Lattuada, D. Caprara, V. Lamberti, F. Sciortino, submitted
    Hyperbranched DNA clusters (arXiv)
  127. B.J.H.M. Rosier, A.J. Markvoort, B. Gumí Audenis, J.A.L. Roodhuizen, A. den Hamer, L. Brunsveld & T.F.A. de Greef, Nat. Catal. 3, 295–306(2020)
    Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome

We are also maintaining a list of all published papers using oxDNA at publons.