Difference between revisions of "Publications"
Jump to navigation
Jump to search
(314 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
#T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''Phys. Rev. Lett''. '''104''', 178101 (2010) | #T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''Phys. Rev. Lett''. '''104''', 178101 (2010) | ||
#:[http://prl.aps.org/abstract/PRL/v104/i17/e178101 DNA Nanotweezers Studied with a Coarse-Grained Model of DNA] ([http://arxiv.org/abs/0911.0555 arXiv]) | #:[http://prl.aps.org/abstract/PRL/v104/i17/e178101 DNA Nanotweezers Studied with a Coarse-Grained Model of DNA] ([http://arxiv.org/abs/0911.0555 arXiv]) | ||
+ | #T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''J. Phys. Condens. Matter''. '''22''', 104102 (2010) | ||
+ | #:[http://dx.doi.org/10.1088/0953-8984/22/10/104102 Extracting bulk properties of self-assembling systems from small simulations] ([https://arxiv.org/abs/0910.1201 arXiv]) | ||
#T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''J. Chem. Phys'', '''134''', 085101 (2011) | #T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''J. Chem. Phys'', '''134''', 085101 (2011) | ||
#:[http://aip.scitation.org/doi/abs/10.1063/1.3552946?journalCode=jcp Structural, mechanical and thermodynamic properties of a coarse-grained DNA model] ([http://arxiv.org/abs/arXiv:1009.4480 arXiv]) | #:[http://aip.scitation.org/doi/abs/10.1063/1.3552946?journalCode=jcp Structural, mechanical and thermodynamic properties of a coarse-grained DNA model] ([http://arxiv.org/abs/arXiv:1009.4480 arXiv]) | ||
Line 12: | Line 14: | ||
#:[http://pubs.acs.org/doi/abs/10.1021/jp3080755 DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism] ([http://arxiv.org/abs/1206.2636 arXiv]) | #:[http://pubs.acs.org/doi/abs/10.1021/jp3080755 DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism] ([http://arxiv.org/abs/1206.2636 arXiv]) | ||
#P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, ''J. Chem. Phys.'' '''137''', 135101 (2012) | #P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, ''J. Chem. Phys.'' '''137''', 135101 (2012) | ||
− | #:[http://dx.doi.org/10.1063/1.4754132 Sequence-dependent thermodynamics of a coarse-grained DNA model] ([http://arxiv.org/abs/1207.3391 arxiv]) | + | #:[http://dx.doi.org/10.1063/1.4754132 Sequence-dependent thermodynamics of a coarse-grained DNA model] ([http://arxiv.org/abs/1207.3391 arxiv]) |
+ | #T.E. Ouldridge, ''J. Chem. Phys.'' '''137''', 144105 (2012) | ||
+ | #:[https://doi.org/10.1063/1.4757267 Inferring bulk self-assembly properties from simulations of small systems with multiple constituent species and small systems in the grand canonical ensemble] ([https://arxiv.org/abs/1204.5716 arXiv]) | ||
#F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, ''J. Chem. Phys.'' '''138''', 085101 (2013) | #F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, ''J. Chem. Phys.'' '''138''', 085101 (2013) | ||
#:[http://dx.doi.org/10.1063/1.4792252 Coarse-grained simulations of DNA overstretching] ([http://arxiv.org/abs/1209.5892 arXiv]) | #:[http://dx.doi.org/10.1063/1.4792252 Coarse-grained simulations of DNA overstretching] ([http://arxiv.org/abs/1209.5892 arXiv]) | ||
Line 65: | Line 69: | ||
# R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, ''arXiv'' (2015) | # R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, ''arXiv'' (2015) | ||
#:[http://arxiv.org/abs/1506.09005 Coarse-grained modelling of strong DNA bending I: Thermodynamics and comparison to an experimental "molecular vice"] | #:[http://arxiv.org/abs/1506.09005 Coarse-grained modelling of strong DNA bending I: Thermodynamics and comparison to an experimental "molecular vice"] | ||
− | # R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, '' | + | # R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, ''J. Chem. Theor. Comput.'' '''15''' 4660-4672 (2019) |
− | #:[http://arxiv.org/abs/1506.09008 | + | #: [https://doi.org/10.1021/acs.jctc.9b00112 Identifying physical causes of apparent enhanced cyclization of short DNA molecules with a coarse-grained model] ([http://arxiv.org/abs/1506.09008 arXiv]) ([http://dx.doi.org/10.5281/zenodo.1753767 data]) |
# J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, ''Science'' '''349''', 977-981 (2015) | # J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, ''Science'' '''349''', 977-981 (2015) | ||
#:[http://dx.doi.org/10.1126/science.aab2666 Base triplet stepping by the Rad51/RecA family of recombinases] | #:[http://dx.doi.org/10.1126/science.aab2666 Base triplet stepping by the Rad51/RecA family of recombinases] | ||
# B. E. K. Snodin, F. Romano, L. Rovigatti, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ''ACS Nano'' '''10''', 1724-1737 (2016) | # B. E. K. Snodin, F. Romano, L. Rovigatti, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ''ACS Nano'' '''10''', 1724-1737 (2016) | ||
− | #:[http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05865 Direct Simulation of the Self-Assembly of a Small DNA Origami] | + | #:[http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05865 Direct Simulation of the Self-Assembly of a Small DNA Origami] ([https://ora.ox.ac.uk/objects/uuid:e71db18a-71f2-4806-9200-dc4cdc283ec8 data]) |
# V. Kočar, J. S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J. P. K. Doye, and R. Jerala, ''Nat. Commun.'' '''7''', 10803 (2016) | # V. Kočar, J. S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J. P. K. Doye, and R. Jerala, ''Nat. Commun.'' '''7''', 10803 (2016) | ||
#:[http://dx.doi.org/10.1038/ncomms10803 Design principles for rapid folding of knotted DNA nanostructures] | #:[http://dx.doi.org/10.1038/ncomms10803 Design principles for rapid folding of knotted DNA nanostructures] | ||
Line 77: | Line 81: | ||
# M. Liu, J. Cheng, S.R. Tee, S. Sreelatha, I.Y. Loh, and Z. Wang, ''ACS Nano'', '''10''', 5882–5890 (2016) | # M. Liu, J. Cheng, S.R. Tee, S. Sreelatha, I.Y. Loh, and Z. Wang, ''ACS Nano'', '''10''', 5882–5890 (2016) | ||
#:[http://pubs.acs.org/doi/abs/10.1021/acsnano.6b01035 Biomimetic autonomous enzymatic nanowalker of high fuel efficiency] | #:[http://pubs.acs.org/doi/abs/10.1021/acsnano.6b01035 Biomimetic autonomous enzymatic nanowalker of high fuel efficiency] | ||
− | # J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, ''J. Chem. Phys.'' '''145''', 084910 (2016) | + | # J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, L. Comez, L. Porcar, C.J. Jafta, G.C. Fadda, T. Bellini and F. Sciortino, ''J. Chem. Phys.'' '''145''', 084910 (2016) |
#:[http://dx.doi.org/10.1063/1.4961398 Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars] | #:[http://dx.doi.org/10.1063/1.4961398 Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars] | ||
− | # T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, '' | + | # T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, ''Nucleic Acids Res.'' '''44''', 9121-9130 (2016) |
#:[http://dx.doi.org/10.1093/nar/gkw815 Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation] | #:[http://dx.doi.org/10.1093/nar/gkw815 Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation] | ||
# Q. Wang and B.M. Pettitt, ''J. Phys. Chem. Lett'' '''7''', 1042–1046 (2016) | # Q. Wang and B.M. Pettitt, ''J. Phys. Chem. Lett'' '''7''', 1042–1046 (2016) | ||
#:[http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.6b00246 Sequence affects the cyclization of DNA minicircles] | #:[http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.6b00246 Sequence affects the cyclization of DNA minicircles] | ||
# A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, ''J. Phys: Condens. Matter'' '''29''', 014006 (2017). | # A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, ''J. Phys: Condens. Matter'' '''29''', 014006 (2017). | ||
− | #:[http://iopscience.iop.org/article/10.1088/0953-8984/29/1/014006 Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal] ([http://arxiv.org/abs/1607.06626 arXiv]) | + | #:[http://iopscience.iop.org/article/10.1088/0953-8984/29/1/014006 Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal] ([http://arxiv.org/abs/1607.06626 arXiv]) ([http://dx.doi.org/10.17863/cam.4904 data]) |
# E. Locatelli, P. H. Handle, C. N. Likos, F. Sciortino and L. Rovigatti, ''ACS Nano'' '''11''', 2094-2102 (2017) | # E. Locatelli, P. H. Handle, C. N. Likos, F. Sciortino and L. Rovigatti, ''ACS Nano'' '''11''', 2094-2102 (2017) | ||
#:[http://pubs.acs.org/doi/abs/10.1021/acsnano.6b08287 Condensation and demixing in solutions of DNA nanostars and their mixtures] | #:[http://pubs.acs.org/doi/abs/10.1021/acsnano.6b08287 Condensation and demixing in solutions of DNA nanostars and their mixtures] | ||
Line 97: | Line 101: | ||
# S. Vangaveti, R. J. D'Esposito, J. L. Lippens, D. Fabris and S. V. Ranganathan, ''Phys. Chem. Chem. Phys.'' '''19''', 14937-14946 (2017) | # S. Vangaveti, R. J. D'Esposito, J. L. Lippens, D. Fabris and S. V. Ranganathan, ''Phys. Chem. Chem. Phys.'' '''19''', 14937-14946 (2017) | ||
#:[http://pubs.rsc.org/en/content/articlehtml/2017/cp/c7cp00717e A coarse-grained model for assisting the investigation of structure and dynamics of large nucleic acids by ion mobility spectrometry–mass spectrometry] | #:[http://pubs.rsc.org/en/content/articlehtml/2017/cp/c7cp00717e A coarse-grained model for assisting the investigation of structure and dynamics of large nucleic acids by ion mobility spectrometry–mass spectrometry] | ||
− | # A. Henning-Knechtel, J. Knechtel and M. Magzoub, '' | + | # A. Henning-Knechtel, J. Knechtel and M. Magzoub, ''Nucleic Acids Res.'' '''45''', 12057–12068 (2017) |
#: [https://doi.org/10.1093/nar/gkx990 DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels] | #: [https://doi.org/10.1093/nar/gkx990 DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels] | ||
− | # | + | # R. Sharma, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ''ACS Nano'' '''11''', 12426–12435 (2017) |
#:[http://dx.doi.org/10.1021/acsnano.7b06470 Characterizing the motion of jointed DNA nanostructures using a coarse-grained model] | #:[http://dx.doi.org/10.1021/acsnano.7b06470 Characterizing the motion of jointed DNA nanostructures using a coarse-grained model] | ||
− | # B. Joffroy, Y.O. Uca, D. Prešern, J.P.K. Doye and T.L. Schmidt, '' | + | # Q.Y. Yeo, I.Y. Loh, S.R. Tee, Y.H. Chiang, J. Cheng, M.H. Liu and Z.S. Wang, ''Nanoscale'' '''9''', 12142-12149 (2017) |
− | #: [http://dx.doi.org/10.1093/nar/gkx1238 Rolling circle amplification shows a sinusoidal template length-dependent amplification bias] | + | #:[https://doi.org/10.1039/C7NR03809G A DNA bipedal nanowalker with a piston-like expulsion stroke] |
− | # D.C. Khara, J.S. Schreck, T.E. Tomov, Y. Berger, T.E. Ouldridge, J.P.K. Doye and E. Nir, '' | + | # Q. Wang, R.N. Irobalieva, W. Chiu, M.F. Schmid, J.M. Fogg, L. Zechiedrich, B.M. Pettitt, ''Nucleic Acids Res.'' '''45''' 7633-7642 (2017) |
− | #: [http://dx.doi.org/10.1093/nar/gkx1282 DNA bipedal motor walking dynamics: An experimental and theoretical study of the dependency on step size] | + | #: [https://doi.org/10.1093/nar/gkx516 Influence of DNA sequence on the structure of minicircles under torsional stress] |
− | # P. Fonseca, F. Romano, J. S. Schreck, T.E. Ouldridge, J.P.K. Doye and A.A. Louis, ''J. Chem. Phys'' '''148''' | + | # B. Joffroy, Y.O. Uca, D. Prešern, J.P.K. Doye and T.L. Schmidt, ''Nucleic Acids Res.'' '''46''', 538-545 (2018) |
− | #: Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self assembly ([http://arxiv.org/abs/1712.02161 arXiv]) | + | #: [http://dx.doi.org/10.1093/nar/gkx1238 Rolling circle amplification shows a sinusoidal template length-dependent amplification bias] ([http://dx.doi.org/10.5287/bodleian:VJJYJXOrg data]) |
− | # T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P.K. Doye and A.N. Kapanidis, | + | # R.V. Reshetnikov, A.V. Stolyarova, A.O. Zalevsky, D.Y. Panteleev, G.V. Pavlova, D.V. Klinov, A.V. Golovin, A.D. Protopopova, ''Nucleic Acids Res.'' '''46''', 1102–1112 (2018) |
− | #: Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase ([https://www.biorxiv.org/content/early/2018/02/10/263038 bioRXiv]) | + | #: [https://doi.org/10.1093/nar/gkx1262 A coarse-grained model for DNA origami] |
+ | # D.C. Khara, J.S. Schreck, T.E. Tomov, Y. Berger, T.E. Ouldridge, J.P.K. Doye and E. Nir, ''Nucleic Acids Res.'' '''46''', 1553-1561 (2018) | ||
+ | #: [http://dx.doi.org/10.1093/nar/gkx1282 DNA bipedal motor walking dynamics: An experimental and theoretical study of the dependency on step size] ([https://doi.org/10.5287/bodleian:w4ZwVr6Jg data]) | ||
+ | # P. Fonseca, F. Romano, J. S. Schreck, T.E. Ouldridge, J.P.K. Doye and A.A. Louis, ''J. Chem. Phys'' '''148''', 134910 (2018) | ||
+ | #: [https://doi.org/10.1063/1.5019344 Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self assembly] ([http://arxiv.org/abs/1712.02161 arXiv]) | ||
+ | # T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P.K. Doye and A.N. Kapanidis, ''Nucleic Acids Res.'' '''47''', 10788–10800 (2019) | ||
+ | #: [http://dx.doi.org/10.1093/nar/gkz797 Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase] ([https://www.biorxiv.org/content/early/2018/02/10/263038 bioRXiv]) | ||
# S.R. Tee and Z. Wang, ''ACS Omega'', '''3''', 292-301 (2018) | # S.R. Tee and Z. Wang, ''ACS Omega'', '''3''', 292-301 (2018) | ||
#: [http://dx.doi.org/10.1021/acsomega.7b01692 How well can DNA rupture DNA? Shearing and unzipping forces inside DNA nanostructures] | #: [http://dx.doi.org/10.1021/acsomega.7b01692 How well can DNA rupture DNA? Shearing and unzipping forces inside DNA nanostructures] | ||
− | # E. Skoruppa, S.K. Nomidis, J.F. Marko | + | # E. Skoruppa, S.K. Nomidis, J.F. Marko and E. Carlon, ''Phys. Rev. Lett.'' '''121''', 088101 (2018) |
− | #: Bend-induced twist waves and the structure of nucleosomal DNA ([http://arxiv.org/abs/1801.10005 arXiv]) | + | #: [https://doi.org/10.1103/PhysRevLett.121.088101 Bend-induced twist waves and the structure of nucleosomal DNA] ([http://arxiv.org/abs/1801.10005 arXiv]) |
− | # M.M.C. Tortora and J.P.K. Doye, | + | # M.M.C. Tortora and J.P.K. Doye, ''Mol. Phys.'' '''116''', 2773-2791 (2018) |
− | #: | + | #: [http://dx.doi.org/10.1080/00268976.2018.1464226 Incorporating particle flexibility in a density functional description of nematics and cholesterics] ([http://arxiv.org/abs/1801.10601 arXiv]) |
− | # O. Henrich, Y.A. Gutierrez-Fosado, T. Curk, T.E. Ouldridge, | + | # O. Henrich, Y.A. Gutierrez-Fosado, T. Curk, T.E. Ouldridge, ''Eur. Phys. J. E'' '''41''', 57 (2018) |
− | #: Coarse-Grained Simulation of DNA using LAMMPS ([http://arxiv.org/abs/1802.07145 arXiv]) | + | #: [http://dx.doi.org/10.1140/epje/i2018-11669-8 Coarse-Grained Simulation of DNA using LAMMPS] ([http://arxiv.org/abs/1802.07145 arXiv]) |
− | # M.C. Engel, D. M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis and J.P.K. Doye, | + | # M.C. Engel, D. M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis and J.P.K. Doye, ''ACS Nano'' '''12''', 6734-6747 (2018) |
− | #: Force-induced unravelling of DNA Origami | + | #: [http://dx.doi.org/10.1021/acsnano.8b01844 Force-induced unravelling of DNA Origami] |
+ | # F. Romano and L. Rovigatti, in ''Design of Self-Assembling Materials'' (Springer, ed. I. Coluzza) pp 71-90 (2017) | ||
+ | #: [http://dx.doi.org/10.1007/978-3-319-71578-0_3 A Nucleotide-Level Computational Approach to DNA-Based Materials] | ||
+ | # S.R. Tee, X. Hu, I.Y. Loh and Z. Wang, ''Phys. Rev. Applied'' '''9''', 034025 (2018) | ||
+ | #: [https://doi.org/10.1103/PhysRevApplied.9.034025 Mechanosensing potentials gate fuel consumption in a bipedal DNA nanowalker] | ||
+ | # E. Locatelli and L. Rovigatti, ''Polymers'' '''10''', 447 (2018) | ||
+ | #: [https://doi.org/10.3390/polym10040447 An Accurate Estimate of the Free Energy and Phase Diagram of All-DNA Bulk Fluids] ([https://www.preprints.org/manuscript/201803.0203/v1 preprints]) | ||
+ | # E. Spruijt, S.E. Tusk and H. Bayley, ''Nature Nanotechnology'' '''13''', 739-745 (2018) | ||
+ | #: [http://dx.doi.org/10.1038/s41565-018-0139-6 DNA scaffolds support stable and uniform peptide nanopores] | ||
+ | # L. Coronel, A. Suma and C. Micheletti, ''Nucleic Acids Res.'' '''46''',7522–7532 (2018) | ||
+ | #: [https://doi.org/10.1093/nar/gky523 Dynamics of supercoiled DNA with complex knots: large-scale rearrangements and persistent multi-strand interlocking] ([https://doi.org/10.1101/331314 bioRXiv]) | ||
+ | # E. Torelli, J.W. Kozyra, J.-Y. Gu, U. Stimming, L. Piantanida. K. Voitchovsky and N. Krasnogor, ''Scientific Reports'' '''8''', 6989 (2018) | ||
+ | #: [http://dx.doi.org/10.1038/s41598-018-25270-6 Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon ] | ||
+ | # R. Jin and L. Maibaum, ''J. Chem. Phys.'' '''150''', 105103 (2019) | ||
+ | #: [https://doi.org/10.1063/1.5054593 Mechanisms of DNA hybridization: Transition path analysis of a simulation-informed Markov model]([https://arxiv.org/abs/1807.04258 arxiv]) | ||
+ | # F. Kriegel, C. Matek, T. Dršata, K. Kulenkampff, S. Tschirpke, M. Zacharias, F. Lankas and J. Lipfert, ''Nucleic Acids Res.'' '''46''', 7998–8009 (2018) | ||
+ | #: [https://doi.org/10.1093/nar/gky599 The temperature dependence of the helical twist of DNA] | ||
+ | # E. Benson, A. Mohammed, D. Rayneau-Kirkhope, A. Gådin, P. Orponen, and B. Högberg, ''ACS Nano'' '''12''', 9291-9299 (2018) | ||
+ | #: [http://dx.doi.org/10.1021/acsnano.8b04148 Effects of Design Choices on the Stiffness of Wireframe DNA Origami Structures] | ||
+ | # S.K. Nomidis, E. Skoruppa, E. Carlon and J.F. Marko, ''Phys. Rev. E'' '''99''' 032414 (2019). | ||
+ | #: [https://doi.org/10.1103/PhysRevE.99.032414 Twist-bend coupling and the statistical mechanics of the twistable worm-like chain model of DNA: Perturbation theory and beyond] ([https://doi.org/10.1101/422683 bioRXiv],[https://arxiv.org/abs/1809.07050 arXiv]) | ||
+ | # B. E. K. Snodin, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ''Nucleic Acids Res.'' '''47''', 1585–1597 (2019). | ||
+ | #: [http://dx.doi.org/10.1093/nar/gky1304 Coarse-grained modelling of the structural properties of DNA origami] ([https://arxiv.org/abs/1809.08430 arXiv]) ([http://dx.doi.org/10.5287/bodleian:8gY5EnYYO data]) | ||
+ | # N. E. C. Haley, T. E. Ouldridge, A. Geraldini, A. A. Louis, J. Bath and A. J. Turberfield, ''Nat. Commun'' '''11''', 2562 (2020) | ||
+ | #: [https://doi.org/10.1038/s41467-020-16353-y Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement] ([https://doi.org/10.1101/426668 bioRXiv]) | ||
+ | # L. Zhou, A.E. Marras, C.-M. Huang, C.E. Castro and H.-J Su, ''Small'' '''14''', 1802580 (2018) | ||
+ | #: [https://doi.org/10.1002/smll.201802580 Paper origami‐inspired design and actuation of DNA nanomachines with complex motions] | ||
+ | # R. A. Brady, W.T. Kaufhold, N.J. Brooks, V. Foderà and L. Di Michele, ''J. Phys. Condens. Matter'' '''31''', 074003 (2019) | ||
+ | #: [https://doi.org/10.1088/1361-648X/aaf4a1 Flexibility defines structure in crystals of amphiphilic DNA nanostars] ([https://arxiv.org/abs/1810.05761 arXiv]) | ||
+ | # F. Hong, S. Jiang, X. Lan, R.P. Narayanan, P. Šulc, F. Zhang, Y. Liu, and H. Yan, ''J. Am. Chem. Soc.'' '''140''', 14670–14676 (2018) | ||
+ | #: [https://doi.org/10.1021/jacs.8b07180 Layered-crossover tiles with precisely tunable angles for 2D and 3D DNA crystal engineering] | ||
+ | # Y. Choi, H. Choi, A.C. Lee, S. Kwon, ''J. Vis. Exp.'', e58364 (2018) | ||
+ | #: [https://doi.org/10.3791/58364 Design and Synthesis of a Reconfigurable DNA Accordion Rack] | ||
+ | # M.M.C. Tortora, G. Mishra, D. Prešern and J.P.K. Doye, ''Sci. Adv.'' '''6''', eaaw8331 (2020) | ||
+ | #: [https://dx.doi.org/10.1126/sciadv.aaw8331 Chiral shape fluctuations and the origin of chirality in cholesteric phases of DNA origamis] ([https://arxiv.org/abs/1811.12331 arXiv]) | ||
+ | # C.-M. Huang, A. Kucinic, J.V. Le, C.E. Castro and H.-J. Su, ''Nanoscale'' '''11''', 1647-1660 (2019) | ||
+ | #: [https://dx.doi.org/10.1039/C8NR06377J Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis] | ||
+ | # I.T. Hoffecker, S. Chen, A. Gådin, A. Bosco, A.I. Teixeira and B. Högberg, ''Small'' '''15''', 1803628 (2019) | ||
+ | #: [https://doi.org/10.1002/smll.201803628 Solution‐controlled conformational switching of an anchored wireframe DNA nanostructure] | ||
+ | # M. Coraglio, E. Skoruppa and E. Carlon, ''J. Chem. Phys.'' '''150''', 135101 (2019) | ||
+ | #: [https://doi.org/10.1063/1.5084950 Overtwisting induces polygonal shapes in bent DNA] ([https://arxiv.org/abs/1812.03701 arXiv]) | ||
+ | # M. Matthies, N.P. Agarwal, E. Poppleton, F.M. Joshi, P. Šulc, and T.L. Schmidt, ''ACS Nano'' '''13''' 1839-1848 (2019) | ||
+ | #: [https://doi.org/10.1021/acsnano.8b08009 Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles] | ||
+ | # Y.A.G. Fosado, Z. Xing, E. Eiser, M. Hudek, O. Henrich, submitted | ||
+ | #: A Numerical Study of Three-Armed DNA Hydrogel Structures ([https://arxiv.org/abs/1903.04186 arXiv]) | ||
+ | # W.T. Kaufhold, R.A. Brady, J.M. Tuffnell, P. Cicuta, and L. Di Michele, ''Bioconjugate Chem'' '''30''', 1850-1859 (2019) | ||
+ | #: [https://doi.org/10.1021/acs.bioconjchem.9b00080 Membrane scaffolds enhance the responsiveness and stability of DNA-based sensing circuits] | ||
+ | # S.K. Nomidis, M. Coraglio, M. Laleman, K. Phillips, E. Skoruppa and E. Carlon, ''Phys. Rev. E'' '''100''', 022402 (2019) | ||
+ | #: [https://doi.org/10.1103/PhysRevE.100.022402 Twist-bend coupling, twist waves and DNA loops] ([https://arxiv.org/abs/1904.04677 arXiv]) | ||
+ | # A. Suma, A. Stopar, A.W. Nicholson, M. Castronovo, V. Carnevale, ''Nucleic Acids Res.'' '''48''', 4672–4680 (2020) | ||
+ | #: [https://doi.org/10.1093/nar/gkaa080 Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure] ([https://doi.org/10.1101/640847 bioRxiv]) | ||
+ | # J. Liu, S. Shukor, S. Li, A. Tamayo, L. Tosi, B. Larman, V. Nanda, W.K. Olson and B. Parekkadan, ''Biomolecules'' '''9''', 199 (2019) | ||
+ | #: [https://doi.org/10.3390/biom9050199 Computational simulation of adapter length-dependent LASSO probe capture efficiency] | ||
+ | # A. Suma, E. Poppleton, M. Matthies, P. Šulc, F. Romano, A.A. Louis, J.P.K. Doye, C. Micheletti, and L. Rovigatti, ''J. Comput. Chem.'' '''40''', 2586-2595 (2019) | ||
+ | #: [http://dx.doi.org/10.1002/jcc.26029 tacoxDNA: a user-friendly web server for simulations of complex DNA structures, from single strands to origami] | ||
+ | # J.F. Berengut, J.C. Berengut, J.P.K. Doye, D. Prešern, A. Kawamoto, J. Ruan, M.J. Wainwright and L.K. Lee,, ''Nucleic Acids Res.'' '''47''', 11963–11975(2019) | ||
+ | #: [https://doi.org/10.1093/nar/gkz1056 Design and synthesis of pleated DNA origami nanotubes with adjustable diameters] ([http://dx.doi.org/10.1101/534792 bioRxiv]) | ||
+ | # K.G. Young, B. Najafi, W.M. Sant, S. Contera, A.A. Louis, J.P.K. Doye, A.J. Turberfield and J. Bath, ''Angew. Chem. Int. Ed.'' '''59''', 15942-15946 (2020) | ||
+ | #: [https://doi.org/10.1002/anie.202006281 Reconfigurable T-junction DNA origami] | ||
+ | # I.D. Stoev, T. Cao, A. Caciagli, J. Yu, C. Ness, R. Liu, R. Ghosh, T. O'Neill, D. Liu and E. Eiser, ''Soft Matter'' '''16''', 990-1001 (2020) | ||
+ | #: [http://dx.doi.org/10.1039/C9SM01398A On the Role of Flexibility in Linker-Mediated DNA Hydrogels] ([https://arxiv.org/abs/1909.05611 arXiv]) | ||
+ | # E. Benson, M. Lolaico, Y. Tarasov, A. Gådin and B. Högberg, ''ACS Nano'' '''13''', 12591-12598 (2019) | ||
+ | #: [https://doi.org/10.1021/acsnano.9b03473 Evolutionary Refinement of DNA Nanostructures Using Coarse-Grained Molecular Dynamics Simulations] | ||
+ | # S.W. Shin, S.Y. Ahn, Y.T. Lim and S.H. Um, ''Anal. Chem.'' '''91''', 14808-14811 (2019) | ||
+ | #: [https://doi.org/10.1021/acs.analchem.9b03173 Improved Sensitivity of Intramolecular Strand Displacement Based on Localization of Probes] | ||
+ | # Z. Shi and G. Arya, ''Nucleic Acids Research'' '''48''', 548-560 (2020) | ||
+ | #: [https://doi.org/10.1093/nar/gkz1137 Free energy landscape of salt-actuated reconfigurable DNA nanodevices] | ||
+ | # E. Torelli, J.W. Kozyra, B. Shirt-Ediss, L. Piantanida, K. Voïtchovsky, N. Krasnogor, ''ACS Synth. Biol.'' '''9''', 1682-1692 (2020) | ||
+ | #: [https://doi.org/10.1021/acssynbio.0c00009 Co-transcriptional folding of a bio-orthogonal fluorescent scaffolded RNA origami] ([https://doi.org/10.1101/864678 bioRxiv]) | ||
+ | # P.R Desai, S. Brahmachari, J.F. Marko, S. Das, K.C. Neuman, ''Nucleic Acids Res.'' '''48''', 10713–10725 (2020) | ||
+ | #: Coarse-Grained Modeling of DNA Plectoneme Formation in the Presence of Base-Pair Mismatches ([https://doi.org/10.1101/2019.12.20.885533 bioRxiv]) | ||
+ | # K. Bartnik, A. Barth, M. Pilo-Pais, A.H. Crevenna, T. Liedl and D.C. Lamb, ''J. Am. Chem. Soc'' '''142''', 815-825 (2020). | ||
+ | #:[https://doi.org/10.1021/jacs.9b09093 A DNA origami platform for single-pair Förster resonance energy transfer investigation of DNA–DNA interactions and ligation] | ||
+ | # E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang and P. Šulc, ''Nucleic Acids Res.'' '''48''', e72 (2020) | ||
+ | #: [https://doi.org/10.1093/nar/gkaa417 Design, optimization, and analysis of large DNA and RNA nanostructures through interactive visualization, editing, and molecular simulation] ([https://doi.org/10.1101/2020.01.24.917419 bioRxiv]) | ||
+ | # M.C. Engel, F. Romano, A.A. Louis and J.P.K. Doye, ''J. Chem. Theor. Comput.'' '''16''', 7764–7775 (2020). | ||
+ | #: [https://doi.org/10.1021/acs.jctc.0c00286 Measuring internal forces in single-stranded DNA: Application to a DNA force clamp] ([http://arxiv.org/abs/arXiv:2007.13865 arXiv]) | ||
+ | # C. Bores and B.M. Pettitt, ''Phys. Rev. E'' '''101''', 012406 (2020) | ||
+ | #: [https://doi.org/10.1103/PhysRevE.101.012406 Structure and the role of filling rate on model dsDNA packed in a phage capsid] | ||
+ | # A. Bader and S.L. Cockroft, ''Chem. Commun.'' '''56''', 5135-5138 (2020) | ||
+ | #: [https://doi.org/10.1039/D0CC00882F Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices] | ||
+ | # J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck and M.C. Engel, M. Matthies, E. Benson, E. Poppleton and B.E.K. Snodin, ''Methods in Molecular Biology'', submitted. | ||
+ | #: The oxDNA coarse-grained model as a tool to simulate DNA origami ([http://arxiv.org/abs/2004.05052 arXiv]) ([http://dx.doi.org/10.5287/bodleian:vgqKg0rYo data]) | ||
+ | # J. Lee, J.-H. Huh, S. Lee, ''Langmuir'' '''36''', 5118–5125 (2020) | ||
+ | #: [https://doi.org/10.1021/acs.langmuir.0c00239 DNA Base Pair-Stacking Crystallization of Gold Colloids] | ||
+ | # A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, ''Nat. Commun.'' '''12''', 501 (2021) | ||
+ | #: [https://doi.org/10.1038/s41467-020-20686-z Repeat DNA-PAINT suppresses background and non-specific signals in optical nanoscopy] ([https://doi.org/10.1101/2020.04.24.059410 bioRxiv]) | ||
+ | # B. Najafi, K.G. Young, J. Bath, A.A. Louis, J.P.K. Doye and A.J. Turberfield, submitted | ||
+ | #: Characterising DNA T-motifs by simulation and experiment ([https://arxiv.org/abs/2005.11545 arXiv]) | ||
+ | # C.M. Huang, A. Kucinic, J.A. Johnson, H.-J. Su, C.E. Castro, ''Nat. Mater.'' '''20''', 1264–1271 (2021) | ||
+ | #: [https://doi.org/10.1038/s41563-021-00978-5 Integrating computer-aided engineering and design for DNA assemblies] ([https://doi.org/10.1101/2020.05.28.119701 bioRxiv]) | ||
+ | # P. Irmisch, T.E. Ouldridge, and R. Seidel, ''J. Am. Chem. Soc'' '''142''', 11451–11463 (2020) | ||
+ | #: [https://doi.org/10.1021/jacs.0c03105 Modelling DNA-strand displacement reactions in the presence of base-pair mismatches] | ||
+ | # F. Hong, J.S. Schreck and P. Šulc, ''Nucleic Acids Res.'' '''48''', 10726–10738 (2020). | ||
+ | #: [https://doi.org/10.1093/nar/gkaa854 Understanding DNA interactions in crowded environments with a coarse-grained model] ([https://doi.org/10.1101/2020.06.08.140434 bioRxiv]) | ||
+ | # A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, ''J. Am. Chem. Soc.'' '''142''', 12069–12078 (2020) | ||
+ | #: [https://doi.org/10.1021/jacs.9b03418 Detecting nanoscale distribution of protein pairs by proximity dependent super-resolution microscopy] ([https://doi.org/10.1101/591081 bioRxiv]) | ||
+ | # H. Chhabra, G. Mishra, Y. Cao, D. Prešern, E. Skoruppa, M.M.C. Tortora and J.P.K. Doye, ''J. Chem. Theor. Comput.'' '''16''', 7748–7763 (2020). | ||
+ | #: [https://dx.doi.org/10.1021/acs.jctc.0c00661 Computing the elastic mechanical properties of rod-like DNA nanostructures] ([http://arXiv.org arXiv]) | ||
+ | # K. Tapio, A. Mostafa, Y. Kanehira, A. Suma, A. Dutta, I. Bald, ''ACS Nano'' '''15''', 7065–7077 (2021) | ||
+ | #: [https://doi.org/10.1021/acsnano.1c00188 A versatile DNA origami based plasmonic nanoantenna for label-free single-molecule SERS] ([https://doi.org/10.21203/rs.3.rs-47458/v1 Research Square]) | ||
+ | # E.G. Noya, C.K. Wong, P. Llombart and J.P.K. Doye, ''Nature'' 596, 367–371 (2021) | ||
+ | #: [https://doi.org/10.1038/s41586-021-03700-2 How to design an icosahedral quasicrystal through directional bonding] | ||
+ | # Y.A.G. Fosado, F. Landuzzi and T. Sakaue, ''Soft Matter'' '''17''', 1530-1537 (2021) | ||
+ | #: [https://doi.org/10.1039/D0SM01812K Twist dynamics and buckling instability of ring DNA: Effect of groove asymmetry and anisotropic bending] ([https://arxiv.org/abs/2008.05686 arXiv]) | ||
+ | # F. Spinozzi, M.G. Ortore, G. Nava, F. Bomboi, F. Carducci, H. Amenitsch, T. Bellini, F. Sciortino, and P. Mariani, ''Langmuir'' '''36''', 10387–10396 (2020) | ||
+ | #: [https://doi.org/10.1021/acs.langmuir.0c01520 Gelling without structuring: a SAXS study of the interactions among DNA nanostars] | ||
+ | # J. Huang A. Suma, M. Cui, G. Grundmeier, V. Carnevale, Y. Zhang, C. Kielar and A. Keller, ''Small Str.'' '''1''', 2000038 (2020) | ||
+ | #: [https://doi.org/10.1002/sstr.202000038 Arranging small molecules with sub‐nanometer precision on DNA origami substrates for the single‐molecule investigation of protein‐ligand interactions] | ||
+ | # G. Yao, F. Zhang, F. Wang, T. Peng, H. Liu, E. Poppleton, P. Šulc, S. Jiang, L. Liu, C. Gong, X. Jing, X. Liu, L. Wang, Y. Liu, C. Fan and H. Yan, ''Nat. Chem.'' '''12''', 1067–1075 (2020) | ||
+ | #: [https://doi.org/10.1038/s41557-020-0539-8 Meta-DNA structures] | ||
+ | # J.F. Berengut, C.K. Wong, J.C. Berengut, J.P.K. Doye, T.E. Ouldridge and L.K. Lee, ''ACS Nano'' '''14''', 17428–17441 (2020) | ||
+ | #: [http://dx.doi.org/10.1021/acsnano.0c07696 Self-limiting polymerization of DNA origami subunits with strain accumulation] | ||
+ | # J. Procyk, E. Poppleton and P. Šulc, ''Soft Matter'' '''17''', 3586-3593 (2021). | ||
+ | #: [https://doi.org/10.1039/D0SM01639J Coarse-grained nucleic acid-protein model for hybrid nanotechnology] ([https://arxiv.org/abs/2009.09589 arXiv]) | ||
+ | # Z. Sierzega, J. Wereszczynski and C. Prior, ''Sci. Rep.'' '''11''', 1527 (2021) | ||
+ | #: [https://doi.org/10.1038/s41598-020-80851-8 WASP: A software package for correctly characterizing the topological development of ribbon structures] ([https://doi.org/10.1101/2020.09.17.301309 bioRXiv]) | ||
+ | # E. Skoruppa, A. Voorspoels, J. Vreede and E. Carlon, ''Phys. Rev. E'' '''103''', 042408 (2021) | ||
+ | #: [https://doi.org/10.1103/PhysRevE.103.042408 Length scale dependent elasticity in DNA from coarse-grained and all-atom models] ([https://arxiv.org/abs/2010.01302 arXiv]) | ||
+ | # C. Bores, M. Woodson, M.C. Morais, and B. Montgomery Pettitt, ''J. Phys. Chem. B'' '''124''', 10337–10344 (2020) | ||
+ | #: [https://doi.org/10.1021/acs.jpcb.0c07478 Effects of model shape, volume, and softness of the capsid for DNA packaging of phi29] | ||
+ | # E. Lattuada, D. Caprara, V. Lamberti, F. Sciortino, ''Nanoscale'' '''12''', 23003-23012 (2020) | ||
+ | #: [https://doi.org/10.1039/D0NR04840B Hyperbranched DNA clusters] ([https://arxiv.org/abs/2011.07854 arXiv]) | ||
+ | # B.J.H.M. Rosier, A.J. Markvoort, B. Gumí Audenis, J.A.L. Roodhuizen, A. den Hamer, L. Brunsveld and T.F.A. de Greef, ''Nat. Catal.'' '''3''', 295–306 (2020) | ||
+ | #: [https://doi.org/10.1038/s41929-019-0403-7 Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome] | ||
+ | # R. Li, H. Chen and J.H. Choi, ''Angew. Chem. Int. Ed.'' '''60''', 7165-7173 (2021) | ||
+ | #: [https://doi.org/10.1002/anie.202014729 Auxetic Two‐Dimensional Nanostructures from DNA] ([https://doi.org/10.1101/2020.08.21.262139 bioRXiv]) | ||
+ | # D. Wang, L. Yu, C.-M. Huang, G. Arya, S. Chang, and Y. Ke, ''J. Am. Chem. Soc.'' '''143''', 2256–2263 (2021) | ||
+ | #: [https://doi.org/10.1021/jacs.0c10576 Programmable transformations of DNA origami made of small modular dynamic units] | ||
+ | # R. Li, H. Chen, H. Lee, J. H. Choi, ''Appl. Sci.'' '''11''', 2357 (2021) | ||
+ | #: [https://doi.org/10.3390/app11052357 Elucidating the mechanical energy for cyclization of a DNA origami tile] ([https://doi.org/10.1101/2021.02.07.430115 bioRxiv]) | ||
+ | # G. Park, M. K. Cho, and Y. Jung, ''J. Chem. Theory Comput.'', '''17''' 1308-1317 (2021) | ||
+ | #: [https://doi.org/10.1021/acs.jctc.0c01116 Sequence-dependent kink formation in short DNA loops: Theory and molecular dynamics simulations] | ||
+ | # S. Jonchhe, S. Pandey, D. Karna, P. Pokhrel, Y. Cui, S. Mishra, H. Sugiyama, M. Endo and H. Mao, ''J. Am. Chem. Soc'' '''142''', 10042–10049 (2020) | ||
+ | #:[https://doi.org/10.1021/jacs.0c01978 Duplex DNA Is Weakened in Nanoconfinement] | ||
+ | # R. Li, H. Chen and J. H. Choi, ''Small'' '''17''', 2007069 (2021) | ||
+ | #: [https://doi.org/10.1002/smll.202007069 Topological Assembly of a Deployable Hoberman Flight Ring from DNA] | ||
+ | # S. Naskar, P. K. Maiti, ''J. Mater. Chem. B '' '''9''', 5102-5113 | ||
+ | #: [https://doi.org/10.1039/D0TB02970J Mechanical properties of DNA and DNA nanostructures: comparison of atomistic, martini and oxDNA] ([https://arxiv.org/abs/2103.17217 arXiv]) | ||
+ | # B. Babatunde, S. Arias, J. Cagan and R.E. Taylor, ''Appl. Sci.'' '''11''', 2950 (2021) | ||
+ | #: [https://doi.org/10.3390/app11072950 Generating DNA origami nanostructures through shape annealing] | ||
+ | # N.M. Gravina, J.C. Gumbart and H.D. Kim, ''J. Phys. Chem. B'' '''125''', 4016–4024 (2021) | ||
+ | #: [https://doi.org/10.1021/acs.jpcb.1c00432 Coarse-Grained Simulations of DNA Reveal Angular Dependence of Sticky-End Binding] | ||
+ | # A. Sengar, T.E. Ouldridge, O. Henrich, L. Rovigatti and P. Šulc, ''Front. Mol. Biosci.'' '''8''', 693710 (2021) | ||
+ | #: [https://www.frontiersin.org/articles/10.3389/fmolb.2021.693710/full A primer on the oxDNA model of DNA: When to use it, how to simulate it and how to interpret the results] ([https://arxiv.org/abs/2104.11567 arXiv]) ([https://dx.doi.org/10.5281/zenodo.4809769 data]) | ||
+ | # E. Poppleton, R. Romero, A. Mallya, L. Rovigatti and P. Šulc, ''Nucl. Acids Res.'' '''49''' W491–W498 (2021) | ||
+ | #: [https://doi.org/10.1093/nar/gkab324 OxDNA.org: a public webserver for coarse-grained simulations of DNA and RNA nanostructures] | ||
+ | # Y. Yamashita, K. Watanabe, S. Murata and I. Kawamata, ''Chem-Bio Informatics Journal'' '''21''', 28-38 (2021) | ||
+ | #: [https://doi.org/10.1273/cbij.21.28 Web Server with a Simple Interface for Coarse-grained Molecular Dynamics of DNA Nanostructures] | ||
+ | # E. Benson, R. Carrascosa Marzo, J. Bath, A.J. Turberfield, ''Small'' '''17''', 2007704 (2021) | ||
+ | #: [https://doi.org/10.1002/smll.202007704 Strategies for Constructing and Operating DNA Origami Linear Actuators] | ||
+ | # Z. Qu, Y.N. Zhang, Z. Dai, Y. Zhang, Y. Hao, J. Shen, F. Wang, Q. Li, C. Fan, X. Liu, ''Angew. Chem. Int. Ed.'' '''60''', 16693-16699 (2021) | ||
+ | #: [https://doi.org/10.1002/anie.202106010 DNA framework-engineered long-range electrostatic interactions for DNA hybridization reactions] | ||
+ | # Y. Wang, I. Baars, F. Fördös and B. Högberg, ''ACS Nano'' '''15''' 9614–9626 (2021) | ||
+ | #: [https://doi.org/10.1021/acsnano.0c10104 Clustering of Death Receptor for Apoptosis Using Nanoscale Patterns of Peptides] | ||
+ | # Y. Wang, E. Benson, F. Fördős, M. Lolaico, I. Baars, T. Fang, A.I. Teixeira, B. Högberg, ''Adv. Mater.'' '''33''', 2008457 (2021) | ||
+ | #: [https://doi.org/10.1002/adma.202008457 DNA Origami Penetration in Cell Spheroid Tissue Models is Enhanced by Wireframe Design] | ||
+ | # L. Li, H. Wang, C. Xiong, D. Luo, H. Chen and Y. Liu, ''J. Phys.: Condens. Matter'' '''33''', 185102 (2021) | ||
+ | #: [https://doi.org/10.1088/1361-648X/abee38 Quantify the combined effects of temperature and force on the stability of DNA hairpin] | ||
+ | # J. P. Mahalik and M. Muthukumar, submitted | ||
+ | #: Nucleotide Dynamics During Flossing of Polycation-DNA-Polycation through a Nanopore using Molecular Dynamics ([https://doi.org/10.1101/2021.06.21.449276 bioRxiv]) | ||
+ | # N. Li, Y. Liu, Z. Yin, R. Liu, L. Zhang, Y. Zhao, L. Ma, X. Dai, D. Zhou, X. Su, ''Nano Today'' '''41''' 101308 (2021) | ||
+ | #: [https://doi.org/10.1016/j.nantod.2021.101308 Self-resetting Molecular Probes for Nucleic Acids Enabled by Fuel Dissipative Systems] ([https://doi.org/10.1101/2021.06.01.21257665 medRxiv]) | ||
+ | # Y. Yang, Q. Lu, C.-M. Huang, H. Qian, Y. Zhang, S. Deshpande, G. Arya, Y. Ke, S. Zauscher, ''Angew. Chem. Int. Ed.'' '''60''', 3241-23247 (2021) | ||
+ | #: [https://doi.org/10.1002/anie.202107829 Programmable site-specific functionalization of DNA origami with polynucleotide brushes] | ||
+ | # Z. Yu, M. Centola, J. Valero, M. Matthies, P. Šulc, and M. Famulok, ''J. Am. Chem. Soc.'' '''143''', 13292–13298 (2021) | ||
+ | #: [https://doi.org/10.1021/jacs.1c06226 A Self-Regulating DNA Rotaxane Linear Actuator Driven by Chemical Energy] | ||
+ | # Y. Wang, J. V. Le, K. Crocker, M.A. Darcy, P.D. Halley, D. Zhao, N. Andrioff, C. Croy, M.G Poirier, R. Bundschuh, C.E Castro, ''Nucleic Acids Res.'' '''49''', 8987–8999 (2021) | ||
+ | #: [https://doi.org/10.1093/nar/gkab656 A nanoscale DNA force spectrometer capable of applying tension and compression on biomolecules] | ||
+ | # F. Liu, X. Liu, Q. Shi, C. Maffeo, M. Kojima, L. Dong, A. Aksimentiev, Q. Huang, T. Fukuda and T. Arai, ''Nanoscale'' '''13''', 15552-15559 (2021) | ||
+ | #: [https://doi.org/10.1039/D1NR02757C A tetrahedral DNA nanorobot with conformational change in response to molecular trigger] | ||
+ | # J. Appeldorn, S. Lemcke, T. Speck and A. Nikoubashman, submitted. | ||
+ | #: Employing artificial neural networks to find reaction coordinates and pathways for self-assembly ([https://doi.org/10.33774/chemrxiv-2021-9t07w ChemRxiv]) | ||
+ | # H. Jun, X. Wang, M.F. Parsons, W.P. Bricker, T. John, S. Li, S. Jackson, W. Chiu, M. Bathe, ''Nucleic Acids Res.'' '''49''', 10265–10274 (2021) | ||
+ | #:[https://doi.org/10.1093/nar/gkab762 Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami] | ||
+ | # C.K. Wong, C. Tang, J.S. Schreck and J.P.K. Doye, ''Nanoscale'' '''14''', 2638–2648 (2022). | ||
+ | #: [https://doi.org/10.1039/D1NR05716B Characterizing the free-energy landscapes of DNA origamis] ([https://arxiv.org/abs/2108.06517 arXiv]) | ||
+ | # W. Lim, F. Randisi, J.P.K. Doye and A.A. Louis, ''Nucleic Acids Res.'' '''50''', 2480–2492 (2022). | ||
+ | #: [https://doi.org/10.1093/nar/gkac082 The interplay of supercoiling and thymine dimers in DNA] ([https://doi.org/10.1101/2021.09.27.461905 bioRxiv]) | ||
+ | # W.T. Kaufhold, W. Pfeifer, C.E. Castro and L. Di Michele, ''ACS Nano'' '''16''', accepted (2022). | ||
+ | #: [https://doi.org/10.1021/acsnano.1c08999 Probing the mechanical properties of DNA nanostructures with metadynamics] ([https://arxiv.org/abs/2110.01477 arXiv]) | ||
+ | # H. Su, J.M. Brockman, Y. Duan, N. Sen, H. Chhabra, A. Bazrafshan, A.T. Blanchard, T. Meyer, B. Andrews, J.P.K. Doye, Y. Ke, R.B. Dyer and K. Salaita, ''J. Am. Chem. Soc.'' '''43''', 19466–19473 (2021). | ||
+ | #: [https://doi.org/10.1021/jacs.1c08796 Massively parallelized molecular force manipulation with on demand thermal and optical control] | ||
+ | # L. Yang, C. Cullin and J. Elezgaray, ''ChemPhysChem'' '''23''', e202200021 (2022). | ||
+ | #: [https://doi.org/10.1002/cphc.202200021 Detection of short DNA sequences with DNA nanopores] ([https://arxiv.org/abs/2110.11642 arXiv]) | ||
+ | # Y. Pan, R. Weng, L. Zhang, J. Qiu, X. Wang, G. Liao, Z. Qin, R. Liu, X. Dai, Y. Qian, X. Su, submitted. | ||
+ | #: Intramolecular Orthogonal Reporters for Dissecting Oxidative Stress and Response ([https://doi.org/10.21203/rs.3.rs-917337/v1 Research Square]) | ||
+ | # X. Wang, S. Li, H. Jun, T. John, K. Zhang, H. Fowler, J.P.K. Doye, W. Chiu and M. Bathe, submitted. | ||
+ | #: Planar 2D wireframe DNA origami | ||
+ | # E. Poppleton, A. Mallya, S. Dey, J. Joseph, P. Šulc, ''Nucleic Acids Res.'' '''50''', D246–D252 (2022) | ||
+ | #: [https://doi.org/10.1093/nar/gkab1000 Nanobase.org: a repository for DNA and RNA nanostructures] | ||
+ | # R. Foffi, F. Sciortino, J. M. Tavares, P. I. C. Teixeira, ''Soft Matter'' '''17''', 10736-10743 (2021) | ||
+ | #: [https://doi.org/10.1039/D1SM01130H Building up DNA, bit by bit: a simple description of chain assembly] ([https://arxiv.org/abs/2111.03978 arXiv]) | ||
+ | # J. Yoo, S. Park, C. Maffeo, T. Ha, A. Aksimentiev, ''Nucleic Acids Res.'' '''49''', 11459–11475 (2021). | ||
+ | #: [https://doi.org/10.1093/nar/gkab967 DNA sequence and methylation prescribe the inside-out conformational dynamics and bending energetics of DNA minicircles] | ||
+ | # E. Lin-Shiao, W.G. Pfeifer, B.R. Shy, M. Saffari Doost, E. Chen, V.S. Vykunta, J.R. Hamilton, E.C. Stahl, D.M. Lopez, C.R. Sandoval Espinoza, A.E. Dejanov, R.J. Lew, M.G. Poirer, A. Marson, C.E. Castro, J.A. Doudna, ''Nucleic Acids Res.'' '''50''', 1256–1268 (2022) | ||
+ | #: [https://doi.org/10.1093/nar/gkac049 CRISPR-Cas9 mediated nuclear transport and genomic integration of nanostructured genes in human primary cells] ([https://doi.org/10.1101/2021.11.08.467750 bioRxiv]) | ||
+ | # J.P.K. Doye, A.A. Louis, J.S. Schreck, F. Romano, R.M. Harrison, M. Mosayebi, M.C. Engel, T.E. Ouldridge, to appear in ''[https://www.elsevier.com/books/energy-landscapes-of-nanoscale-systems/wales/978-0-12-824406-7 Energy Landscapes of Nanoscale Systems]'', ed. D.J. Wales, ''Frontiers of Nanoscience'' Vol. 21 (Elsevier) | ||
+ | #: Free-energy landscapes of DNA and its assemblies: Perspectives from coarse-grained modelling ([https://arxiv.org/abs/2111.10166 arXiv]) | ||
+ | # Y. Deng, Y. Tan, L. Zhang, C. Zhang, X. Su, submitted. | ||
+ | #: Forecasting the reaction of DNA modifying enzymes on DNA nanostructures by coarse grained model for stimuli-responsive drug delivery ([https://doi.org/10.21203/rs.3.rs-1038517/v1 Research Square]) | ||
+ | # D. Smith and G. Tikhomirov, submitted. | ||
+ | #: small: A programmatic nanostructure design and modelling environment ([https://arxiv.org/abs/2111.15184 arXiv]) | ||
+ | # S. Assenza and R. Pérez, ''J. Chem. Theory Comput'' '''18''', 3239–3256 (2022). | ||
+ | #: [https://doi.org/10.1021/acs.jctc.2c00138 Accurate sequence-dependent coarse-grained model for conformational and elastic properties of double-stranded DNA] ([https://doi.org/10.1101/2021.12.02.470889 biorXiv]) | ||
+ | # D. Kuťák, E. Poppleton, H. Miao, P. Šulc and I. Barišić, ''Molecules'' '''27''', 63 (2022) | ||
+ | #: [https://doi.org/10.3390/molecules27010063 Unified Nanotechnology Format: One Way to Store Them All] | ||
+ | # M. Centola, E. Poppleton, M. Centola, J. Valero, P. Šulc and M. Famulok, submitted. | ||
+ | #: A rhythmically pulsing leaf-spring nanoengine that drives a passive follower ([https://doi.org/10.1101/2021.12.22.473833 biorXiv]) | ||
+ | # C.K. Wong and J.P.K. Doye, submitted | ||
+ | #: The free-energy landscape of a mechanically bistable DNA origami ([http://arxiv.org/abs/2201.08920 arXiv]) | ||
+ | # L. Zhang, J. Chen, M. He, X. Su, ''Exploration'' '''2''', 20210265 (2022) | ||
+ | #: [https://doi.org/10.1002/EXP.20210265 Molecular dynamics simulation-guided toehold mediated strand displacement probe for single-nucleotide variants detection] | ||
+ | # F. Mambretti, N. Pedrani, L. Casiraghi, E. M. Paraboschi, T. Bellini, S. Suweis, ''Entropy'' '''24''', 458 (2022) | ||
+ | #: [https://doi.org/10.3390/e24040458 OxDNA to study species interactions] ([https://arxiv.org/abs/2202.05653 arXiv]) | ||
+ | # Y.A.G. Fosado, submitted | ||
+ | #: Nanostars planarity modulates the elasticity of DNA hydrogels ([https://arxiv.org/abs/2202.06331 arXiv]) | ||
+ | # X. Hu, L. Tang, M. Zheng, J. Liu, Z. Zhang, Z. Li, Q. Yang, S. Xiang, L. Fang, Q. Ren, X. Liu, C.Z. Huang, C. Mao and H. Zuo, ''J. Am. Chem. Soc.'' '''144''', 4507–4514 (2022) | ||
+ | #: [https://doi.org/10.1021/jacs.1c12593 Structure-guided designing pre-organization in bivalent aptamers] | ||
+ | # L. Liu F. Hong H. Liu X. Zhou S. Jiang P. Šulc J.-H. Jiang and H. Yan, ''Sci. Adv.'' '''8''', eabm9530 (2022) | ||
+ | #: [https://doi.org/10.1126/sciadv.abm9530 A localized DNA finite-state machine with temporal resolution] | ||
+ | # Y. Xin, P. Piskunen, A. Suma, C. Li, H. Ijäs, S. Ojasalo, I. Seitz, M.A. Kostiainen, G. Grundmeier, V. Linko and A. Keller, ''Small'' '''18''', 2107393 (2022) | ||
+ | #: [https://doi.org/10.1002/smll.202107393 Environment-dependent stability and mechanical properties of DNA origami six-helix bundles with different crossover spacings] | ||
+ | # R.L. Bender, H. Ogasawara, A.V. Kellner, A. Velusamy and K. Salaita, submitted | ||
+ | #: Unbreakable DNA tension probes show that cell adhesion receptors detect the molecular force-extension curve of their ligands ([https://doi.org/10.1101/2022.04.04.487040 bioRxiv]) | ||
+ | # E. Benson, R. Carrascosa Marzo, J. Bath and A.J. Turberfield, ''Sci. Robot.'' '''7''', eabn5459 (2022) | ||
+ | #: [https://doi.org/10.1126/scirobotics.abn5459 A DNA molecular printer capable of programmable positioning and patterning in two dimensions] | ||
+ | # D.J. Hart, J. Jeong, J.C. Gumbart and H.D. Kim, submitted | ||
+ | #: Weak tension accelerates hybridization and dehybridization of short oligonucleotides ([https://doi.org/10.1101/2022.04.19.488836 bioRxiv]) | ||
+ | # S. Sensale, P. Sharma and G. Arya, ''Phys. Rev. E'' '''105''', 044136 (2022) | ||
+ | #: [https://doi.org/10.1103/PhysRevE.105.044136 Binding kinetics of harmonically confined random walkers] | ||
+ | # S. Dey, A. Dorey, L. Abraham, Y. Xing, I. Zhang, F. Zhang, S. Howorka and H. Yan, ''Nat. Commun.'' '''13''', 2271 (2022) | ||
+ | #: [https://doi.org/10.1038/s41467-022-28522-2 A reversibly gated protein-transporting membrane channel made of DNA] | ||
+ | # D. Luo, A. Kouyoumdjian, O. Strnad, H. Miao, I. Barišić and I. Viola, submitted (2022) | ||
+ | #: SynopSet: Multiscale visual abstraction set for explanatory analysis of DNA nanotechnology simulations ([https://arxiv.org/abs/2205.01628 arXiv]) | ||
+ | |||
+ | We are also maintaining a list of all published papers using oxDNA at [https://publons.com/researcher/3051012/oxdna-oxrna/ publons]. |
Latest revision as of 08:45, 18 May 2022
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, Phys. Rev. Lett. 104, 178101 (2010)
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Phys. Condens. Matter. 22, 104102 (2010)
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Chem. Phys, 134, 085101 (2011)
- T. E. Ouldridge, D.Phil. Thesis, University of Oxford, 2011.
- F. Romano, A. Hudson, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 136, 215102 (2012)
- C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, Soft Matter 8, 8388 (2012)
- C. Matek, T. E. Ouldridge, A. Levy, J. P. K. Doye, A. A. Louis, J. Phys. Chem. B 116, 1161-11625 (2012)
- P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 137, 135101 (2012)
- T.E. Ouldridge, J. Chem. Phys. 137, 144105 (2012)
- F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 138, 085101 (2013)
- T. E. Ouldridge, R. L. Hoare, A. A. Louis, J. P. K. Doye, J. Bath, A. J. Turberfield, ACS Nano 7, 2479-2490 (2013)
- T. E. Ouldridge, P. Šulc, F. Romano, J. P. K. Doye, A. A. Louis, Nucleic Acids Res. 41, 8886-8895 (2013)
- J.P.K. Doye, T. E. Ouldridge, A. A. Louis, F. Romano, P. Šulc, C. Matek, B.E.K. Snodin, L. Rovigatti, J. S. Schreck, R.M. Harrison, W.P.J. Smith, Phys. Chem. Chem. Phys 15, 20395-20414 (2013)
- N. Srinivas, T. E. Ouldridge, P. Šulc, J. M. Schaeffer, B. Yurke, A. A. Louis, J. P. K. Doye, E. Winfree, Nucleic Acids Res. 41, 10641-10658 (2013)
- P. Šulc, T. E. Ouldridge, F. Romano, J. P. K. Doye, A. A. Louis, Natural Computing 13, 535 (2014)
- L. Rovigatti, F. Bomboi, F. Sciortino, J. Chem. Phys. 140, 154903 (2014)
- P. Šulc, F. Romano, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 140, 235102 (2014)
- L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ACS Nano 8, 3567-3574 (2014)
- Q. Wang, B. M. Pettitt, Biophys. J. 106, 1182–1193 (2014)
- J. S. Schreck, T. E. Ouldridge, F. Romano, P. Šulc, L. Shaw, A. A. Louis, J.P.K. Doye, Nucleic Acids Res. 43, 6181-6190 (2014)
- R. Machinek, T.E. Ouldridge, N.E.C. Haley, J. Bath, A. J. Turberfield, Nature Comm. 5, 5324 (2014)
- M. Mosayebi, F. Romano, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, J. Phys. Chem. B 118, 14326-14335 (2014)
- I. Y. Loh, J.Cheng, S. R. Tee, A. Efremov, and Z. Wang, ACS Nano 8, 10293–10304 (2014)
- C. Matek, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, Sci. Rep., 5, 7655 (2015)
- L. Rovigatti, P. Šulc, I. Reguly, F. Romano, J. Comput. Chem., 36, 1-8 (2015)
- P. Krstić, B. Ashcroft and S. Lindsay, Nanotechnology, 26, 084001 (2015)
- F. Romano and F. Sciortino, Phys. Rev. Lett. 114, 078104 (2015)
- J. S. Schreck, T. E. Ouldridge, F. Romano, A. A. Louis, J.P.K. Doye, J. Chem. Phys. 142, 165101 (2015)
- M. Mosayebi, A. A. Louis, J.P.K. Doye, T. E. Ouldridge ACS Nano 9, 11993 (2015)
- T. E. Ouldridge, Mol. Phys. 113, 1-15 (2015)
- P. Šulc, T. E. Ouldridge, F. Romano, J.P.K. Doye, A. A. Louis, Biophys. J. 108, 1238-1247 (2015)
- B. E. K. Snodin, F. Randisi, M. Mosayebi, P. Šulc, J. S. Schreck, F. Romano, T. E. Ouldridge, R. Tsukanov, E. Nir, A. A. Louis, J. P. K. Doye, J. Chem. Phys. 142, 234901 (2015)
- C. Matek, P. Šulc, F. Randisi, J.P.K. Doye, A. A. Louis, J. Chem. Phys. 143, 243122 (2015)
- Q. Wang, C.G. Myers, and B.M. Pettitt, J. Phys. Chem. B 119, 4937–4943 (2015)
- R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, arXiv (2015)
- R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, J. Chem. Theor. Comput. 15 4660-4672 (2019)
- J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, Science 349, 977-981 (2015)
- B. E. K. Snodin, F. Romano, L. Rovigatti, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ACS Nano 10, 1724-1737 (2016)
- V. Kočar, J. S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J. P. K. Doye, and R. Jerala, Nat. Commun. 7, 10803 (2016)
- J. S. Schreck, F. Romano, M.H. Zimmer, A.A. Louis and J.P.K. Doye, ACS Nano, 10, 4236-4247 (2016)
- M. Liu, J. Cheng, S.R. Tee, S. Sreelatha, I.Y. Loh, and Z. Wang, ACS Nano, 10, 5882–5890 (2016)
- J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, L. Comez, L. Porcar, C.J. Jafta, G.C. Fadda, T. Bellini and F. Sciortino, J. Chem. Phys. 145, 084910 (2016)
- T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, Nucleic Acids Res. 44, 9121-9130 (2016)
- Q. Wang and B.M. Pettitt, J. Phys. Chem. Lett 7, 1042–1046 (2016)
- A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, J. Phys: Condens. Matter 29, 014006 (2017).
- E. Locatelli, P. H. Handle, C. N. Likos, F. Sciortino and L. Rovigatti, ACS Nano 11, 2094-2102 (2017)
- E. Skoruppa, M. Laleman, S. Nomidis, E. Carlon, J. Chem. Phys 146, 214902 (2017)
- A. Suma and C. Micheletti, Proc. Natl. Acad. Sci. USA 114, E2991–E2997 (2017)
- Z. Shi, C. E. Castro and G. Arya, ACS Nano 11, 4617–4630 (2017)
- H. Yagyu, J.-Y. Lee, D.-N. Kim, and O. Tabata, J. Phys. Chem. B 121, 5033–5039 (2017)
- S. Vangaveti, R. J. D'Esposito, J. L. Lippens, D. Fabris and S. V. Ranganathan, Phys. Chem. Chem. Phys. 19, 14937-14946 (2017)
- A. Henning-Knechtel, J. Knechtel and M. Magzoub, Nucleic Acids Res. 45, 12057–12068 (2017)
- R. Sharma, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ACS Nano 11, 12426–12435 (2017)
- Q.Y. Yeo, I.Y. Loh, S.R. Tee, Y.H. Chiang, J. Cheng, M.H. Liu and Z.S. Wang, Nanoscale 9, 12142-12149 (2017)
- Q. Wang, R.N. Irobalieva, W. Chiu, M.F. Schmid, J.M. Fogg, L. Zechiedrich, B.M. Pettitt, Nucleic Acids Res. 45 7633-7642 (2017)
- B. Joffroy, Y.O. Uca, D. Prešern, J.P.K. Doye and T.L. Schmidt, Nucleic Acids Res. 46, 538-545 (2018)
- R.V. Reshetnikov, A.V. Stolyarova, A.O. Zalevsky, D.Y. Panteleev, G.V. Pavlova, D.V. Klinov, A.V. Golovin, A.D. Protopopova, Nucleic Acids Res. 46, 1102–1112 (2018)
- D.C. Khara, J.S. Schreck, T.E. Tomov, Y. Berger, T.E. Ouldridge, J.P.K. Doye and E. Nir, Nucleic Acids Res. 46, 1553-1561 (2018)
- P. Fonseca, F. Romano, J. S. Schreck, T.E. Ouldridge, J.P.K. Doye and A.A. Louis, J. Chem. Phys 148, 134910 (2018)
- T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P.K. Doye and A.N. Kapanidis, Nucleic Acids Res. 47, 10788–10800 (2019)
- S.R. Tee and Z. Wang, ACS Omega, 3, 292-301 (2018)
- E. Skoruppa, S.K. Nomidis, J.F. Marko and E. Carlon, Phys. Rev. Lett. 121, 088101 (2018)
- M.M.C. Tortora and J.P.K. Doye, Mol. Phys. 116, 2773-2791 (2018)
- O. Henrich, Y.A. Gutierrez-Fosado, T. Curk, T.E. Ouldridge, Eur. Phys. J. E 41, 57 (2018)
- M.C. Engel, D. M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis and J.P.K. Doye, ACS Nano 12, 6734-6747 (2018)
- F. Romano and L. Rovigatti, in Design of Self-Assembling Materials (Springer, ed. I. Coluzza) pp 71-90 (2017)
- S.R. Tee, X. Hu, I.Y. Loh and Z. Wang, Phys. Rev. Applied 9, 034025 (2018)
- E. Locatelli and L. Rovigatti, Polymers 10, 447 (2018)
- E. Spruijt, S.E. Tusk and H. Bayley, Nature Nanotechnology 13, 739-745 (2018)
- L. Coronel, A. Suma and C. Micheletti, Nucleic Acids Res. 46,7522–7532 (2018)
- E. Torelli, J.W. Kozyra, J.-Y. Gu, U. Stimming, L. Piantanida. K. Voitchovsky and N. Krasnogor, Scientific Reports 8, 6989 (2018)
- R. Jin and L. Maibaum, J. Chem. Phys. 150, 105103 (2019)
- F. Kriegel, C. Matek, T. Dršata, K. Kulenkampff, S. Tschirpke, M. Zacharias, F. Lankas and J. Lipfert, Nucleic Acids Res. 46, 7998–8009 (2018)
- E. Benson, A. Mohammed, D. Rayneau-Kirkhope, A. Gådin, P. Orponen, and B. Högberg, ACS Nano 12, 9291-9299 (2018)
- S.K. Nomidis, E. Skoruppa, E. Carlon and J.F. Marko, Phys. Rev. E 99 032414 (2019).
- B. E. K. Snodin, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, Nucleic Acids Res. 47, 1585–1597 (2019).
- N. E. C. Haley, T. E. Ouldridge, A. Geraldini, A. A. Louis, J. Bath and A. J. Turberfield, Nat. Commun 11, 2562 (2020)
- L. Zhou, A.E. Marras, C.-M. Huang, C.E. Castro and H.-J Su, Small 14, 1802580 (2018)
- R. A. Brady, W.T. Kaufhold, N.J. Brooks, V. Foderà and L. Di Michele, J. Phys. Condens. Matter 31, 074003 (2019)
- F. Hong, S. Jiang, X. Lan, R.P. Narayanan, P. Šulc, F. Zhang, Y. Liu, and H. Yan, J. Am. Chem. Soc. 140, 14670–14676 (2018)
- Y. Choi, H. Choi, A.C. Lee, S. Kwon, J. Vis. Exp., e58364 (2018)
- M.M.C. Tortora, G. Mishra, D. Prešern and J.P.K. Doye, Sci. Adv. 6, eaaw8331 (2020)
- C.-M. Huang, A. Kucinic, J.V. Le, C.E. Castro and H.-J. Su, Nanoscale 11, 1647-1660 (2019)
- I.T. Hoffecker, S. Chen, A. Gådin, A. Bosco, A.I. Teixeira and B. Högberg, Small 15, 1803628 (2019)
- M. Coraglio, E. Skoruppa and E. Carlon, J. Chem. Phys. 150, 135101 (2019)
- M. Matthies, N.P. Agarwal, E. Poppleton, F.M. Joshi, P. Šulc, and T.L. Schmidt, ACS Nano 13 1839-1848 (2019)
- Y.A.G. Fosado, Z. Xing, E. Eiser, M. Hudek, O. Henrich, submitted
- A Numerical Study of Three-Armed DNA Hydrogel Structures (arXiv)
- W.T. Kaufhold, R.A. Brady, J.M. Tuffnell, P. Cicuta, and L. Di Michele, Bioconjugate Chem 30, 1850-1859 (2019)
- S.K. Nomidis, M. Coraglio, M. Laleman, K. Phillips, E. Skoruppa and E. Carlon, Phys. Rev. E 100, 022402 (2019)
- A. Suma, A. Stopar, A.W. Nicholson, M. Castronovo, V. Carnevale, Nucleic Acids Res. 48, 4672–4680 (2020)
- J. Liu, S. Shukor, S. Li, A. Tamayo, L. Tosi, B. Larman, V. Nanda, W.K. Olson and B. Parekkadan, Biomolecules 9, 199 (2019)
- A. Suma, E. Poppleton, M. Matthies, P. Šulc, F. Romano, A.A. Louis, J.P.K. Doye, C. Micheletti, and L. Rovigatti, J. Comput. Chem. 40, 2586-2595 (2019)
- J.F. Berengut, J.C. Berengut, J.P.K. Doye, D. Prešern, A. Kawamoto, J. Ruan, M.J. Wainwright and L.K. Lee,, Nucleic Acids Res. 47, 11963–11975(2019)
- K.G. Young, B. Najafi, W.M. Sant, S. Contera, A.A. Louis, J.P.K. Doye, A.J. Turberfield and J. Bath, Angew. Chem. Int. Ed. 59, 15942-15946 (2020)
- I.D. Stoev, T. Cao, A. Caciagli, J. Yu, C. Ness, R. Liu, R. Ghosh, T. O'Neill, D. Liu and E. Eiser, Soft Matter 16, 990-1001 (2020)
- E. Benson, M. Lolaico, Y. Tarasov, A. Gådin and B. Högberg, ACS Nano 13, 12591-12598 (2019)
- S.W. Shin, S.Y. Ahn, Y.T. Lim and S.H. Um, Anal. Chem. 91, 14808-14811 (2019)
- Z. Shi and G. Arya, Nucleic Acids Research 48, 548-560 (2020)
- E. Torelli, J.W. Kozyra, B. Shirt-Ediss, L. Piantanida, K. Voïtchovsky, N. Krasnogor, ACS Synth. Biol. 9, 1682-1692 (2020)
- P.R Desai, S. Brahmachari, J.F. Marko, S. Das, K.C. Neuman, Nucleic Acids Res. 48, 10713–10725 (2020)
- Coarse-Grained Modeling of DNA Plectoneme Formation in the Presence of Base-Pair Mismatches (bioRxiv)
- K. Bartnik, A. Barth, M. Pilo-Pais, A.H. Crevenna, T. Liedl and D.C. Lamb, J. Am. Chem. Soc 142, 815-825 (2020).
- E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang and P. Šulc, Nucleic Acids Res. 48, e72 (2020)
- M.C. Engel, F. Romano, A.A. Louis and J.P.K. Doye, J. Chem. Theor. Comput. 16, 7764–7775 (2020).
- C. Bores and B.M. Pettitt, Phys. Rev. E 101, 012406 (2020)
- A. Bader and S.L. Cockroft, Chem. Commun. 56, 5135-5138 (2020)
- J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck and M.C. Engel, M. Matthies, E. Benson, E. Poppleton and B.E.K. Snodin, Methods in Molecular Biology, submitted.
- J. Lee, J.-H. Huh, S. Lee, Langmuir 36, 5118–5125 (2020)
- A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, Nat. Commun. 12, 501 (2021)
- B. Najafi, K.G. Young, J. Bath, A.A. Louis, J.P.K. Doye and A.J. Turberfield, submitted
- Characterising DNA T-motifs by simulation and experiment (arXiv)
- C.M. Huang, A. Kucinic, J.A. Johnson, H.-J. Su, C.E. Castro, Nat. Mater. 20, 1264–1271 (2021)
- P. Irmisch, T.E. Ouldridge, and R. Seidel, J. Am. Chem. Soc 142, 11451–11463 (2020)
- F. Hong, J.S. Schreck and P. Šulc, Nucleic Acids Res. 48, 10726–10738 (2020).
- A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, J. Am. Chem. Soc. 142, 12069–12078 (2020)
- H. Chhabra, G. Mishra, Y. Cao, D. Prešern, E. Skoruppa, M.M.C. Tortora and J.P.K. Doye, J. Chem. Theor. Comput. 16, 7748–7763 (2020).
- K. Tapio, A. Mostafa, Y. Kanehira, A. Suma, A. Dutta, I. Bald, ACS Nano 15, 7065–7077 (2021)
- E.G. Noya, C.K. Wong, P. Llombart and J.P.K. Doye, Nature 596, 367–371 (2021)
- Y.A.G. Fosado, F. Landuzzi and T. Sakaue, Soft Matter 17, 1530-1537 (2021)
- F. Spinozzi, M.G. Ortore, G. Nava, F. Bomboi, F. Carducci, H. Amenitsch, T. Bellini, F. Sciortino, and P. Mariani, Langmuir 36, 10387–10396 (2020)
- J. Huang A. Suma, M. Cui, G. Grundmeier, V. Carnevale, Y. Zhang, C. Kielar and A. Keller, Small Str. 1, 2000038 (2020)
- G. Yao, F. Zhang, F. Wang, T. Peng, H. Liu, E. Poppleton, P. Šulc, S. Jiang, L. Liu, C. Gong, X. Jing, X. Liu, L. Wang, Y. Liu, C. Fan and H. Yan, Nat. Chem. 12, 1067–1075 (2020)
- J.F. Berengut, C.K. Wong, J.C. Berengut, J.P.K. Doye, T.E. Ouldridge and L.K. Lee, ACS Nano 14, 17428–17441 (2020)
- J. Procyk, E. Poppleton and P. Šulc, Soft Matter 17, 3586-3593 (2021).
- Z. Sierzega, J. Wereszczynski and C. Prior, Sci. Rep. 11, 1527 (2021)
- E. Skoruppa, A. Voorspoels, J. Vreede and E. Carlon, Phys. Rev. E 103, 042408 (2021)
- C. Bores, M. Woodson, M.C. Morais, and B. Montgomery Pettitt, J. Phys. Chem. B 124, 10337–10344 (2020)
- E. Lattuada, D. Caprara, V. Lamberti, F. Sciortino, Nanoscale 12, 23003-23012 (2020)
- B.J.H.M. Rosier, A.J. Markvoort, B. Gumí Audenis, J.A.L. Roodhuizen, A. den Hamer, L. Brunsveld and T.F.A. de Greef, Nat. Catal. 3, 295–306 (2020)
- R. Li, H. Chen and J.H. Choi, Angew. Chem. Int. Ed. 60, 7165-7173 (2021)
- D. Wang, L. Yu, C.-M. Huang, G. Arya, S. Chang, and Y. Ke, J. Am. Chem. Soc. 143, 2256–2263 (2021)
- R. Li, H. Chen, H. Lee, J. H. Choi, Appl. Sci. 11, 2357 (2021)
- G. Park, M. K. Cho, and Y. Jung, J. Chem. Theory Comput., 17 1308-1317 (2021)
- S. Jonchhe, S. Pandey, D. Karna, P. Pokhrel, Y. Cui, S. Mishra, H. Sugiyama, M. Endo and H. Mao, J. Am. Chem. Soc 142, 10042–10049 (2020)
- R. Li, H. Chen and J. H. Choi, Small 17, 2007069 (2021)
- S. Naskar, P. K. Maiti, J. Mater. Chem. B 9, 5102-5113
- B. Babatunde, S. Arias, J. Cagan and R.E. Taylor, Appl. Sci. 11, 2950 (2021)
- N.M. Gravina, J.C. Gumbart and H.D. Kim, J. Phys. Chem. B 125, 4016–4024 (2021)
- A. Sengar, T.E. Ouldridge, O. Henrich, L. Rovigatti and P. Šulc, Front. Mol. Biosci. 8, 693710 (2021)
- E. Poppleton, R. Romero, A. Mallya, L. Rovigatti and P. Šulc, Nucl. Acids Res. 49 W491–W498 (2021)
- Y. Yamashita, K. Watanabe, S. Murata and I. Kawamata, Chem-Bio Informatics Journal 21, 28-38 (2021)
- E. Benson, R. Carrascosa Marzo, J. Bath, A.J. Turberfield, Small 17, 2007704 (2021)
- Z. Qu, Y.N. Zhang, Z. Dai, Y. Zhang, Y. Hao, J. Shen, F. Wang, Q. Li, C. Fan, X. Liu, Angew. Chem. Int. Ed. 60, 16693-16699 (2021)
- Y. Wang, I. Baars, F. Fördös and B. Högberg, ACS Nano 15 9614–9626 (2021)
- Y. Wang, E. Benson, F. Fördős, M. Lolaico, I. Baars, T. Fang, A.I. Teixeira, B. Högberg, Adv. Mater. 33, 2008457 (2021)
- L. Li, H. Wang, C. Xiong, D. Luo, H. Chen and Y. Liu, J. Phys.: Condens. Matter 33, 185102 (2021)
- J. P. Mahalik and M. Muthukumar, submitted
- Nucleotide Dynamics During Flossing of Polycation-DNA-Polycation through a Nanopore using Molecular Dynamics (bioRxiv)
- N. Li, Y. Liu, Z. Yin, R. Liu, L. Zhang, Y. Zhao, L. Ma, X. Dai, D. Zhou, X. Su, Nano Today 41 101308 (2021)
- Y. Yang, Q. Lu, C.-M. Huang, H. Qian, Y. Zhang, S. Deshpande, G. Arya, Y. Ke, S. Zauscher, Angew. Chem. Int. Ed. 60, 3241-23247 (2021)
- Z. Yu, M. Centola, J. Valero, M. Matthies, P. Šulc, and M. Famulok, J. Am. Chem. Soc. 143, 13292–13298 (2021)
- Y. Wang, J. V. Le, K. Crocker, M.A. Darcy, P.D. Halley, D. Zhao, N. Andrioff, C. Croy, M.G Poirier, R. Bundschuh, C.E Castro, Nucleic Acids Res. 49, 8987–8999 (2021)
- F. Liu, X. Liu, Q. Shi, C. Maffeo, M. Kojima, L. Dong, A. Aksimentiev, Q. Huang, T. Fukuda and T. Arai, Nanoscale 13, 15552-15559 (2021)
- J. Appeldorn, S. Lemcke, T. Speck and A. Nikoubashman, submitted.
- Employing artificial neural networks to find reaction coordinates and pathways for self-assembly (ChemRxiv)
- H. Jun, X. Wang, M.F. Parsons, W.P. Bricker, T. John, S. Li, S. Jackson, W. Chiu, M. Bathe, Nucleic Acids Res. 49, 10265–10274 (2021)
- C.K. Wong, C. Tang, J.S. Schreck and J.P.K. Doye, Nanoscale 14, 2638–2648 (2022).
- W. Lim, F. Randisi, J.P.K. Doye and A.A. Louis, Nucleic Acids Res. 50, 2480–2492 (2022).
- W.T. Kaufhold, W. Pfeifer, C.E. Castro and L. Di Michele, ACS Nano 16, accepted (2022).
- H. Su, J.M. Brockman, Y. Duan, N. Sen, H. Chhabra, A. Bazrafshan, A.T. Blanchard, T. Meyer, B. Andrews, J.P.K. Doye, Y. Ke, R.B. Dyer and K. Salaita, J. Am. Chem. Soc. 43, 19466–19473 (2021).
- L. Yang, C. Cullin and J. Elezgaray, ChemPhysChem 23, e202200021 (2022).
- Y. Pan, R. Weng, L. Zhang, J. Qiu, X. Wang, G. Liao, Z. Qin, R. Liu, X. Dai, Y. Qian, X. Su, submitted.
- Intramolecular Orthogonal Reporters for Dissecting Oxidative Stress and Response (Research Square)
- X. Wang, S. Li, H. Jun, T. John, K. Zhang, H. Fowler, J.P.K. Doye, W. Chiu and M. Bathe, submitted.
- Planar 2D wireframe DNA origami
- E. Poppleton, A. Mallya, S. Dey, J. Joseph, P. Šulc, Nucleic Acids Res. 50, D246–D252 (2022)
- R. Foffi, F. Sciortino, J. M. Tavares, P. I. C. Teixeira, Soft Matter 17, 10736-10743 (2021)
- J. Yoo, S. Park, C. Maffeo, T. Ha, A. Aksimentiev, Nucleic Acids Res. 49, 11459–11475 (2021).
- E. Lin-Shiao, W.G. Pfeifer, B.R. Shy, M. Saffari Doost, E. Chen, V.S. Vykunta, J.R. Hamilton, E.C. Stahl, D.M. Lopez, C.R. Sandoval Espinoza, A.E. Dejanov, R.J. Lew, M.G. Poirer, A. Marson, C.E. Castro, J.A. Doudna, Nucleic Acids Res. 50, 1256–1268 (2022)
- J.P.K. Doye, A.A. Louis, J.S. Schreck, F. Romano, R.M. Harrison, M. Mosayebi, M.C. Engel, T.E. Ouldridge, to appear in Energy Landscapes of Nanoscale Systems, ed. D.J. Wales, Frontiers of Nanoscience Vol. 21 (Elsevier)
- Free-energy landscapes of DNA and its assemblies: Perspectives from coarse-grained modelling (arXiv)
- Y. Deng, Y. Tan, L. Zhang, C. Zhang, X. Su, submitted.
- Forecasting the reaction of DNA modifying enzymes on DNA nanostructures by coarse grained model for stimuli-responsive drug delivery (Research Square)
- D. Smith and G. Tikhomirov, submitted.
- small: A programmatic nanostructure design and modelling environment (arXiv)
- S. Assenza and R. Pérez, J. Chem. Theory Comput 18, 3239–3256 (2022).
- D. Kuťák, E. Poppleton, H. Miao, P. Šulc and I. Barišić, Molecules 27, 63 (2022)
- M. Centola, E. Poppleton, M. Centola, J. Valero, P. Šulc and M. Famulok, submitted.
- A rhythmically pulsing leaf-spring nanoengine that drives a passive follower (biorXiv)
- C.K. Wong and J.P.K. Doye, submitted
- The free-energy landscape of a mechanically bistable DNA origami (arXiv)
- L. Zhang, J. Chen, M. He, X. Su, Exploration 2, 20210265 (2022)
- F. Mambretti, N. Pedrani, L. Casiraghi, E. M. Paraboschi, T. Bellini, S. Suweis, Entropy 24, 458 (2022)
- Y.A.G. Fosado, submitted
- Nanostars planarity modulates the elasticity of DNA hydrogels (arXiv)
- X. Hu, L. Tang, M. Zheng, J. Liu, Z. Zhang, Z. Li, Q. Yang, S. Xiang, L. Fang, Q. Ren, X. Liu, C.Z. Huang, C. Mao and H. Zuo, J. Am. Chem. Soc. 144, 4507–4514 (2022)
- L. Liu F. Hong H. Liu X. Zhou S. Jiang P. Šulc J.-H. Jiang and H. Yan, Sci. Adv. 8, eabm9530 (2022)
- Y. Xin, P. Piskunen, A. Suma, C. Li, H. Ijäs, S. Ojasalo, I. Seitz, M.A. Kostiainen, G. Grundmeier, V. Linko and A. Keller, Small 18, 2107393 (2022)
- R.L. Bender, H. Ogasawara, A.V. Kellner, A. Velusamy and K. Salaita, submitted
- Unbreakable DNA tension probes show that cell adhesion receptors detect the molecular force-extension curve of their ligands (bioRxiv)
- E. Benson, R. Carrascosa Marzo, J. Bath and A.J. Turberfield, Sci. Robot. 7, eabn5459 (2022)
- D.J. Hart, J. Jeong, J.C. Gumbart and H.D. Kim, submitted
- Weak tension accelerates hybridization and dehybridization of short oligonucleotides (bioRxiv)
- S. Sensale, P. Sharma and G. Arya, Phys. Rev. E 105, 044136 (2022)
- S. Dey, A. Dorey, L. Abraham, Y. Xing, I. Zhang, F. Zhang, S. Howorka and H. Yan, Nat. Commun. 13, 2271 (2022)
- D. Luo, A. Kouyoumdjian, O. Strnad, H. Miao, I. Barišić and I. Viola, submitted (2022)
- SynopSet: Multiscale visual abstraction set for explanatory analysis of DNA nanotechnology simulations (arXiv)
We are also maintaining a list of all published papers using oxDNA at publons.