Difference between revisions of "Publications"
From OxDNA
(195 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
#T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''Phys. Rev. Lett''. '''104''', 178101 (2010) | #T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''Phys. Rev. Lett''. '''104''', 178101 (2010) | ||
#:[http://prl.aps.org/abstract/PRL/v104/i17/e178101 DNA Nanotweezers Studied with a Coarse-Grained Model of DNA] ([http://arxiv.org/abs/0911.0555 arXiv]) | #:[http://prl.aps.org/abstract/PRL/v104/i17/e178101 DNA Nanotweezers Studied with a Coarse-Grained Model of DNA] ([http://arxiv.org/abs/0911.0555 arXiv]) | ||
+ | #T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''J. Phys. Condens. Matter''. '''22''', 104102 (2010) | ||
+ | #:[http://dx.doi.org/10.1088/0953-8984/22/10/104102 Extracting bulk properties of self-assembling systems from small simulations] ([https://arxiv.org/abs/0910.1201 arXiv]) | ||
#T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''J. Chem. Phys'', '''134''', 085101 (2011) | #T. E. Ouldridge, A. A. Louis and J. P. K. Doye, ''J. Chem. Phys'', '''134''', 085101 (2011) | ||
#:[http://aip.scitation.org/doi/abs/10.1063/1.3552946?journalCode=jcp Structural, mechanical and thermodynamic properties of a coarse-grained DNA model] ([http://arxiv.org/abs/arXiv:1009.4480 arXiv]) | #:[http://aip.scitation.org/doi/abs/10.1063/1.3552946?journalCode=jcp Structural, mechanical and thermodynamic properties of a coarse-grained DNA model] ([http://arxiv.org/abs/arXiv:1009.4480 arXiv]) | ||
Line 12: | Line 14: | ||
#:[http://pubs.acs.org/doi/abs/10.1021/jp3080755 DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism] ([http://arxiv.org/abs/1206.2636 arXiv]) | #:[http://pubs.acs.org/doi/abs/10.1021/jp3080755 DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism] ([http://arxiv.org/abs/1206.2636 arXiv]) | ||
#P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, ''J. Chem. Phys.'' '''137''', 135101 (2012) | #P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, ''J. Chem. Phys.'' '''137''', 135101 (2012) | ||
− | #:[http://dx.doi.org/10.1063/1.4754132 Sequence-dependent thermodynamics of a coarse-grained DNA model] ([http://arxiv.org/abs/1207.3391 arxiv]) | + | #:[http://dx.doi.org/10.1063/1.4754132 Sequence-dependent thermodynamics of a coarse-grained DNA model] ([http://arxiv.org/abs/1207.3391 arxiv]) |
+ | #T.E. Ouldridge, ''J. Chem. Phys.'' '''137''', 144105 (2012) | ||
+ | #:[https://doi.org/10.1063/1.4757267 Inferring bulk self-assembly properties from simulations of small systems with multiple constituent species and small systems in the grand canonical ensemble] ([https://arxiv.org/abs/1204.5716 arXiv]) | ||
#F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, ''J. Chem. Phys.'' '''138''', 085101 (2013) | #F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, ''J. Chem. Phys.'' '''138''', 085101 (2013) | ||
#:[http://dx.doi.org/10.1063/1.4792252 Coarse-grained simulations of DNA overstretching] ([http://arxiv.org/abs/1209.5892 arXiv]) | #:[http://dx.doi.org/10.1063/1.4792252 Coarse-grained simulations of DNA overstretching] ([http://arxiv.org/abs/1209.5892 arXiv]) | ||
Line 65: | Line 69: | ||
# R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, ''arXiv'' (2015) | # R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, ''arXiv'' (2015) | ||
#:[http://arxiv.org/abs/1506.09005 Coarse-grained modelling of strong DNA bending I: Thermodynamics and comparison to an experimental "molecular vice"] | #:[http://arxiv.org/abs/1506.09005 Coarse-grained modelling of strong DNA bending I: Thermodynamics and comparison to an experimental "molecular vice"] | ||
− | # R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, '' | + | # R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, ''J. Chem. Theor. Comput.'' '''15''' 4660-4672 (2019) |
− | #:[http://arxiv.org/abs/1506.09008 | + | #: [https://doi.org/10.1021/acs.jctc.9b00112 Identifying physical causes of apparent enhanced cyclization of short DNA molecules with a coarse-grained model] ([http://arxiv.org/abs/1506.09008 arXiv]) ([http://dx.doi.org/10.5281/zenodo.1753767 data]) |
# J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, ''Science'' '''349''', 977-981 (2015) | # J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, ''Science'' '''349''', 977-981 (2015) | ||
#:[http://dx.doi.org/10.1126/science.aab2666 Base triplet stepping by the Rad51/RecA family of recombinases] | #:[http://dx.doi.org/10.1126/science.aab2666 Base triplet stepping by the Rad51/RecA family of recombinases] | ||
# B. E. K. Snodin, F. Romano, L. Rovigatti, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ''ACS Nano'' '''10''', 1724-1737 (2016) | # B. E. K. Snodin, F. Romano, L. Rovigatti, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ''ACS Nano'' '''10''', 1724-1737 (2016) | ||
− | #:[http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05865 Direct Simulation of the Self-Assembly of a Small DNA Origami] | + | #:[http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05865 Direct Simulation of the Self-Assembly of a Small DNA Origami] ([https://ora.ox.ac.uk/objects/uuid:e71db18a-71f2-4806-9200-dc4cdc283ec8 data]) |
# V. Kočar, J. S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J. P. K. Doye, and R. Jerala, ''Nat. Commun.'' '''7''', 10803 (2016) | # V. Kočar, J. S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J. P. K. Doye, and R. Jerala, ''Nat. Commun.'' '''7''', 10803 (2016) | ||
#:[http://dx.doi.org/10.1038/ncomms10803 Design principles for rapid folding of knotted DNA nanostructures] | #:[http://dx.doi.org/10.1038/ncomms10803 Design principles for rapid folding of knotted DNA nanostructures] | ||
Line 77: | Line 81: | ||
# M. Liu, J. Cheng, S.R. Tee, S. Sreelatha, I.Y. Loh, and Z. Wang, ''ACS Nano'', '''10''', 5882–5890 (2016) | # M. Liu, J. Cheng, S.R. Tee, S. Sreelatha, I.Y. Loh, and Z. Wang, ''ACS Nano'', '''10''', 5882–5890 (2016) | ||
#:[http://pubs.acs.org/doi/abs/10.1021/acsnano.6b01035 Biomimetic autonomous enzymatic nanowalker of high fuel efficiency] | #:[http://pubs.acs.org/doi/abs/10.1021/acsnano.6b01035 Biomimetic autonomous enzymatic nanowalker of high fuel efficiency] | ||
− | # J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, ''J. Chem. Phys.'' '''145''', 084910 (2016) | + | # J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, L. Comez, L. Porcar, C.J. Jafta, G.C. Fadda, T. Bellini and F. Sciortino, ''J. Chem. Phys.'' '''145''', 084910 (2016) |
#:[http://dx.doi.org/10.1063/1.4961398 Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars] | #:[http://dx.doi.org/10.1063/1.4961398 Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars] | ||
− | # T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, '' | + | # T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, ''Nucleic Acids Res.'' '''44''', 9121-9130 (2016) |
#:[http://dx.doi.org/10.1093/nar/gkw815 Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation] | #:[http://dx.doi.org/10.1093/nar/gkw815 Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation] | ||
# Q. Wang and B.M. Pettitt, ''J. Phys. Chem. Lett'' '''7''', 1042–1046 (2016) | # Q. Wang and B.M. Pettitt, ''J. Phys. Chem. Lett'' '''7''', 1042–1046 (2016) | ||
#:[http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.6b00246 Sequence affects the cyclization of DNA minicircles] | #:[http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.6b00246 Sequence affects the cyclization of DNA minicircles] | ||
# A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, ''J. Phys: Condens. Matter'' '''29''', 014006 (2017). | # A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, ''J. Phys: Condens. Matter'' '''29''', 014006 (2017). | ||
− | #:[http://iopscience.iop.org/article/10.1088/0953-8984/29/1/014006 Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal] ([http://arxiv.org/abs/1607.06626 arXiv]) | + | #:[http://iopscience.iop.org/article/10.1088/0953-8984/29/1/014006 Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal] ([http://arxiv.org/abs/1607.06626 arXiv]) ([http://dx.doi.org/10.17863/cam.4904 data]) |
# E. Locatelli, P. H. Handle, C. N. Likos, F. Sciortino and L. Rovigatti, ''ACS Nano'' '''11''', 2094-2102 (2017) | # E. Locatelli, P. H. Handle, C. N. Likos, F. Sciortino and L. Rovigatti, ''ACS Nano'' '''11''', 2094-2102 (2017) | ||
#:[http://pubs.acs.org/doi/abs/10.1021/acsnano.6b08287 Condensation and demixing in solutions of DNA nanostars and their mixtures] | #:[http://pubs.acs.org/doi/abs/10.1021/acsnano.6b08287 Condensation and demixing in solutions of DNA nanostars and their mixtures] | ||
Line 97: | Line 101: | ||
# S. Vangaveti, R. J. D'Esposito, J. L. Lippens, D. Fabris and S. V. Ranganathan, ''Phys. Chem. Chem. Phys.'' '''19''', 14937-14946 (2017) | # S. Vangaveti, R. J. D'Esposito, J. L. Lippens, D. Fabris and S. V. Ranganathan, ''Phys. Chem. Chem. Phys.'' '''19''', 14937-14946 (2017) | ||
#:[http://pubs.rsc.org/en/content/articlehtml/2017/cp/c7cp00717e A coarse-grained model for assisting the investigation of structure and dynamics of large nucleic acids by ion mobility spectrometry–mass spectrometry] | #:[http://pubs.rsc.org/en/content/articlehtml/2017/cp/c7cp00717e A coarse-grained model for assisting the investigation of structure and dynamics of large nucleic acids by ion mobility spectrometry–mass spectrometry] | ||
− | # A. Henning-Knechtel, J. Knechtel and M. Magzoub, '' | + | # A. Henning-Knechtel, J. Knechtel and M. Magzoub, ''Nucleic Acids Res.'' '''45''', 12057–12068 (2017) |
#: [https://doi.org/10.1093/nar/gkx990 DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels] | #: [https://doi.org/10.1093/nar/gkx990 DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels] | ||
− | # | + | # R. Sharma, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ''ACS Nano'' '''11''', 12426–12435 (2017) |
#:[http://dx.doi.org/10.1021/acsnano.7b06470 Characterizing the motion of jointed DNA nanostructures using a coarse-grained model] | #:[http://dx.doi.org/10.1021/acsnano.7b06470 Characterizing the motion of jointed DNA nanostructures using a coarse-grained model] | ||
− | # B. Joffroy, Y.O. Uca, D. Prešern, J.P.K. Doye and T.L. Schmidt, '' | + | # Q.Y. Yeo, I.Y. Loh, S.R. Tee, Y.H. Chiang, J. Cheng, M.H. Liu and Z.S. Wang, ''Nanoscale'' '''9''', 12142-12149 (2017) |
− | #: [http://dx.doi.org/10.1093/nar/gkx1238 Rolling circle amplification shows a sinusoidal template length-dependent amplification bias] | + | #:[https://doi.org/10.1039/C7NR03809G A DNA bipedal nanowalker with a piston-like expulsion stroke] |
− | # D.C. Khara, J.S. Schreck, T.E. Tomov, Y. Berger, T.E. Ouldridge, J.P.K. Doye and E. Nir, '' | + | # Q. Wang, R.N. Irobalieva, W. Chiu, M.F. Schmid, J.M. Fogg, L. Zechiedrich, B.M. Pettitt, ''Nucleic Acids Res.'' '''45''' 7633-7642 (2017) |
− | #: [http://dx.doi.org/10.1093/nar/gkx1282 DNA bipedal motor walking dynamics: An experimental and theoretical study of the dependency on step size] | + | #: [https://doi.org/10.1093/nar/gkx516 Influence of DNA sequence on the structure of minicircles under torsional stress] |
− | # P. Fonseca, F. Romano, J. S. Schreck, T.E. Ouldridge, J.P.K. Doye and A.A. Louis, ''J. Chem. Phys'' '''148''' 134910 (2018) | + | # B. Joffroy, Y.O. Uca, D. Prešern, J.P.K. Doye and T.L. Schmidt, ''Nucleic Acids Res.'' '''46''', 538-545 (2018) |
+ | #: [http://dx.doi.org/10.1093/nar/gkx1238 Rolling circle amplification shows a sinusoidal template length-dependent amplification bias] ([http://dx.doi.org/10.5287/bodleian:VJJYJXOrg data]) | ||
+ | # R.V. Reshetnikov, A.V. Stolyarova, A.O. Zalevsky, D.Y. Panteleev, G.V. Pavlova, D.V. Klinov, A.V. Golovin, A.D. Protopopova, ''Nucleic Acids Res.'' '''46''', 1102–1112 (2018) | ||
+ | #: [https://doi.org/10.1093/nar/gkx1262 A coarse-grained model for DNA origami] | ||
+ | # D.C. Khara, J.S. Schreck, T.E. Tomov, Y. Berger, T.E. Ouldridge, J.P.K. Doye and E. Nir, ''Nucleic Acids Res.'' '''46''', 1553-1561 (2018) | ||
+ | #: [http://dx.doi.org/10.1093/nar/gkx1282 DNA bipedal motor walking dynamics: An experimental and theoretical study of the dependency on step size] ([https://doi.org/10.5287/bodleian:w4ZwVr6Jg data]) | ||
+ | # P. Fonseca, F. Romano, J. S. Schreck, T.E. Ouldridge, J.P.K. Doye and A.A. Louis, ''J. Chem. Phys'' '''148''', 134910 (2018) | ||
#: [https://doi.org/10.1063/1.5019344 Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self assembly] ([http://arxiv.org/abs/1712.02161 arXiv]) | #: [https://doi.org/10.1063/1.5019344 Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self assembly] ([http://arxiv.org/abs/1712.02161 arXiv]) | ||
− | # T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P.K. Doye and A.N. Kapanidis, | + | # T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P.K. Doye and A.N. Kapanidis, ''Nucleic Acids Res.'' '''47''', 10788–10800 (2019) |
− | #: Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase ([https://www.biorxiv.org/content/early/2018/02/10/263038 bioRXiv]) | + | #: [http://dx.doi.org/10.1093/nar/gkz797 Substrate conformational dynamics drive structure-specific recognition of gapped DNA by DNA polymerase] ([https://www.biorxiv.org/content/early/2018/02/10/263038 bioRXiv]) |
# S.R. Tee and Z. Wang, ''ACS Omega'', '''3''', 292-301 (2018) | # S.R. Tee and Z. Wang, ''ACS Omega'', '''3''', 292-301 (2018) | ||
#: [http://dx.doi.org/10.1021/acsomega.7b01692 How well can DNA rupture DNA? Shearing and unzipping forces inside DNA nanostructures] | #: [http://dx.doi.org/10.1021/acsomega.7b01692 How well can DNA rupture DNA? Shearing and unzipping forces inside DNA nanostructures] | ||
− | # E. Skoruppa, S.K. Nomidis, J.F. Marko | + | # E. Skoruppa, S.K. Nomidis, J.F. Marko and E. Carlon, ''Phys. Rev. Lett.'' '''121''', 088101 (2018) |
− | #: Bend-induced twist waves and the structure of nucleosomal DNA ([http://arxiv.org/abs/1801.10005 arXiv]) | + | #: [https://doi.org/10.1103/PhysRevLett.121.088101 Bend-induced twist waves and the structure of nucleosomal DNA] ([http://arxiv.org/abs/1801.10005 arXiv]) |
− | # M.M.C. Tortora and J.P.K. Doye, ''Mol. Phys.'' | + | # M.M.C. Tortora and J.P.K. Doye, ''Mol. Phys.'' '''116''', 2773-2791 (2018) |
− | #: | + | #: [http://dx.doi.org/10.1080/00268976.2018.1464226 Incorporating particle flexibility in a density functional description of nematics and cholesterics] ([http://arxiv.org/abs/1801.10601 arXiv]) |
− | # O. Henrich, Y.A. Gutierrez-Fosado, T. Curk, T.E. Ouldridge, | + | # O. Henrich, Y.A. Gutierrez-Fosado, T. Curk, T.E. Ouldridge, ''Eur. Phys. J. E'' '''41''', 57 (2018) |
− | #: Coarse-Grained Simulation of DNA using LAMMPS ([http://arxiv.org/abs/1802.07145 arXiv]) | + | #: [http://dx.doi.org/10.1140/epje/i2018-11669-8 Coarse-Grained Simulation of DNA using LAMMPS] ([http://arxiv.org/abs/1802.07145 arXiv]) |
− | # M.C. Engel, D. M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis and J.P.K. Doye, | + | # M.C. Engel, D. M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis and J.P.K. Doye, ''ACS Nano'' '''12''', 6734-6747 (2018) |
− | #: Force-induced unravelling of DNA Origami | + | #: [http://dx.doi.org/10.1021/acsnano.8b01844 Force-induced unravelling of DNA Origami] |
− | # F. Romano and L. Rovigatti, in ''Design of Self-Assembling Materials'' (Springer, ed. I. Coluzza) pp 71-90 | + | # F. Romano and L. Rovigatti, in ''Design of Self-Assembling Materials'' (Springer, ed. I. Coluzza) pp 71-90 (2017) |
#: [http://dx.doi.org/10.1007/978-3-319-71578-0_3 A Nucleotide-Level Computational Approach to DNA-Based Materials] | #: [http://dx.doi.org/10.1007/978-3-319-71578-0_3 A Nucleotide-Level Computational Approach to DNA-Based Materials] | ||
+ | # S.R. Tee, X. Hu, I.Y. Loh and Z. Wang, ''Phys. Rev. Applied'' '''9''', 034025 (2018) | ||
+ | #: [https://doi.org/10.1103/PhysRevApplied.9.034025 Mechanosensing potentials gate fuel consumption in a bipedal DNA nanowalker] | ||
+ | # E. Locatelli and L. Rovigatti, ''Polymers'' '''10''', 447 (2018) | ||
+ | #: [https://doi.org/10.3390/polym10040447 An Accurate Estimate of the Free Energy and Phase Diagram of All-DNA Bulk Fluids] ([https://www.preprints.org/manuscript/201803.0203/v1 preprints]) | ||
+ | # E. Spruijt, S.E. Tusk and H. Bayley, ''Nature Nanotechnology'' '''13''', 739-745 (2018) | ||
+ | #: [http://dx.doi.org/10.1038/s41565-018-0139-6 DNA scaffolds support stable and uniform peptide nanopores] | ||
+ | # L. Coronel, A. Suma and C. Micheletti, ''Nucleic Acids Res.'' '''46''',7522–7532 (2018) | ||
+ | #: [https://doi.org/10.1093/nar/gky523 Dynamics of supercoiled DNA with complex knots: large-scale rearrangements and persistent multi-strand interlocking] ([https://doi.org/10.1101/331314 bioRXiv]) | ||
+ | # E. Torelli, J.W. Kozyra, J.-Y. Gu, U. Stimming, L. Piantanida. K. Voitchovsky and N. Krasnogor, ''Scientific Reports'' '''8''', 6989 (2018) | ||
+ | #: [http://dx.doi.org/10.1038/s41598-018-25270-6 Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon ] | ||
+ | # R. Jin and L. Maibaum, ''J. Chem. Phys.'' '''150''', 105103 (2019) | ||
+ | #: [https://doi.org/10.1063/1.5054593 Mechanisms of DNA hybridization: Transition path analysis of a simulation-informed Markov model]([https://arxiv.org/abs/1807.04258 arxiv]) | ||
+ | # F. Kriegel, C. Matek, T. Dršata, K. Kulenkampff, S. Tschirpke, M. Zacharias, F. Lankas and J. Lipfert, ''Nucleic Acids Res.'' '''46''', 7998–8009 (2018) | ||
+ | #: [https://doi.org/10.1093/nar/gky599 The temperature dependence of the helical twist of DNA] | ||
+ | # E. Benson, A. Mohammed, D. Rayneau-Kirkhope, A. Gådin, P. Orponen, and B. Högberg, ''ACS Nano'' '''12''', 9291-9299 (2018) | ||
+ | #: [http://dx.doi.org/10.1021/acsnano.8b04148 Effects of Design Choices on the Stiffness of Wireframe DNA Origami Structures] | ||
+ | # S.K. Nomidis, E. Skoruppa, E. Carlon and J.F. Marko, ''Phys. Rev. E'' '''99''' 032414 (2019). | ||
+ | #: [https://doi.org/10.1103/PhysRevE.99.032414 Twist-bend coupling and the statistical mechanics of the twistable worm-like chain model of DNA: Perturbation theory and beyond] ([https://doi.org/10.1101/422683 bioRXiv],[https://arxiv.org/abs/1809.07050 arXiv]) | ||
+ | # B. E. K. Snodin, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ''Nucleic Acids Res.'' '''47''', 1585–1597 (2019). | ||
+ | #: [http://dx.doi.org/10.1093/nar/gky1304 Coarse-grained modelling of the structural properties of DNA origami] ([https://arxiv.org/abs/1809.08430 arXiv]) ([http://dx.doi.org/10.5287/bodleian:8gY5EnYYO data]) | ||
+ | # N. E. C. Haley, T. E. Ouldridge, A. Geraldini, A. A. Louis, J. Bath and A. J. Turberfield, ''Nat. Commun'' '''11''', 2562 (2020) | ||
+ | #: [https://doi.org/10.1038/s41467-020-16353-y Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement] ([https://doi.org/10.1101/426668 bioRXiv]) | ||
+ | # L. Zhou, A.E. Marras, C.-M. Huang, C.E. Castro and H.-J Su, ''Small'' '''14''', 1802580 (2018) | ||
+ | #: [https://doi.org/10.1002/smll.201802580 Paper origami‐inspired design and actuation of DNA nanomachines with complex motions] | ||
+ | # R. A. Brady, W.T. Kaufhold, N.J. Brooks, V. Foderà and L. Di Michele, ''J. Phys. Condens. Matter'' '''31''', 074003 (2019) | ||
+ | #: [https://doi.org/10.1088/1361-648X/aaf4a1 Flexibility defines structure in crystals of amphiphilic DNA nanostars] ([https://arxiv.org/abs/1810.05761 arXiv]) | ||
+ | # F. Hong, S. Jiang, X. Lan, R.P. Narayanan, P. Šulc, F. Zhang, Y. Liu, and H. Yan, ''J. Am. Chem. Soc.'' '''140''', 14670–14676 (2018) | ||
+ | #: [https://doi.org/10.1021/jacs.8b07180 Layered-crossover tiles with precisely tunable angles for 2D and 3D DNA crystal engineering] | ||
+ | # Y. Choi, H. Choi, A.C. Lee, S. Kwon, ''J. Vis. Exp.'', e58364 (2018) | ||
+ | #: [https://doi.org/10.3791/58364 Design and Synthesis of a Reconfigurable DNA Accordion Rack] | ||
+ | # M.M.C. Tortora, G. Mishra, D. Prešern and J.P.K. Doye, ''Sci. Adv.'' '''6''', eaaw8331 (2020) | ||
+ | #: [https://dx.doi.org/10.1126/sciadv.aaw8331 Chiral shape fluctuations and the origin of chirality in cholesteric phases of DNA origamis] ([https://arxiv.org/abs/1811.12331 arXiv]) | ||
+ | # C.-M. Huang, A. Kucinic, J.V. Le, C.E. Castro and H.-J. Su, ''Nanoscale'' '''11''', 1647-1660 (2019) | ||
+ | #: [https://dx.doi.org/10.1039/C8NR06377J Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis] | ||
+ | # I.T. Hoffecker, S. Chen, A. Gådin, A. Bosco, A.I. Teixeira and B. Högberg, ''Small'' '''15''', 1803628 (2019) | ||
+ | #: [https://doi.org/10.1002/smll.201803628 Solution‐controlled conformational switching of an anchored wireframe DNA nanostructure] | ||
+ | # M. Coraglio, E. Skoruppa and E. Carlon, ''J. Chem. Phys.'' '''150''', 135101 (2019) | ||
+ | #: [https://doi.org/10.1063/1.5084950 Overtwisting induces polygonal shapes in bent DNA] ([https://arxiv.org/abs/1812.03701 arXiv]) | ||
+ | # M. Matthies, N.P. Agarwal, E. Poppleton, F.M. Joshi, P. Šulc, and T.L. Schmidt, ''ACS Nano'' '''13''' 1839-1848 (2019) | ||
+ | #: [https://doi.org/10.1021/acsnano.8b08009 Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles] | ||
+ | # Y.A.G. Fosado, Z. Xing, E. Eiser, M. Hudek, O. Henrich, submitted | ||
+ | #: A Numerical Study of Three-Armed DNA Hydrogel Structures ([https://arxiv.org/abs/1903.04186 arXiv]) | ||
+ | # W.T. Kaufhold, R.A. Brady, J.M. Tuffnell, P. Cicuta, and L. Di Michele, ''Bioconjugate Chem'' '''30''', 1850-1859 (2019) | ||
+ | #: [https://doi.org/10.1021/acs.bioconjchem.9b00080 Membrane scaffolds enhance the responsiveness and stability of DNA-based sensing circuits] | ||
+ | # S.K. Nomidis, M. Coraglio, M. Laleman, K. Phillips, E. Skoruppa and E. Carlon, ''Phys. Rev. E'' '''100''', 022402 (2019) | ||
+ | #: [https://doi.org/10.1103/PhysRevE.100.022402 Twist-bend coupling, twist waves and DNA loops] ([https://arxiv.org/abs/1904.04677 arXiv]) | ||
+ | # A. Suma, A. Stopar, A.W. Nicholson, M. Castronovo, V. Carnevale, ''Nucleic Acids Res.'' '''48''', 4672–4680 (2020) | ||
+ | #: [https://doi.org/10.1093/nar/gkaa080 Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure] ([https://doi.org/10.1101/640847 bioRxiv]) | ||
+ | # J. Liu, S. Shukor, S. Li, A. Tamayo, L. Tosi, B. Larman, V. Nanda, W.K. Olson and B. Parekkadan, ''Biomolecules'' '''9''', 199 (2019) | ||
+ | #: [https://doi.org/10.3390/biom9050199 Computational simulation of adapter length-dependent LASSO probe capture efficiency] | ||
+ | # A. Suma, E. Poppleton, M. Matthies, P. Šulc, F. Romano, A.A. Louis, J.P.K. Doye, C. Micheletti, and L. Rovigatti, ''J. Comput. Chem.'' '''40''', 2586-2595 (2019) | ||
+ | #: [http://dx.doi.org/10.1002/jcc.26029 tacoxDNA: a user-friendly web server for simulations of complex DNA structures, from single strands to origami] | ||
+ | # J.F. Berengut, J.C. Berengut, J.P.K. Doye, D. Prešern, A. Kawamoto, J. Ruan, M.J. Wainwright and L.K. Lee,, ''Nucleic Acids Res.'' '''47''', 11963–11975(2019) | ||
+ | #: [https://doi.org/10.1093/nar/gkz1056 Design and synthesis of pleated DNA origami nanotubes with adjustable diameters] ([http://dx.doi.org/10.1101/534792 bioRxiv]) | ||
+ | # K.G. Young, B. Najafi, W.M. Sant, S. Contera, A.A. Louis, J.P.K. Doye, A.J. Turberfield and J. Bath, ''Angew. Chem. Int. Ed.'' '''59''', 15942-15946 (2020) | ||
+ | #: [https://doi.org/10.1002/anie.202006281 Reconfigurable T-junction DNA origami] | ||
+ | # I.D. Stoev, T. Cao, A. Caciagli, J. Yu, C. Ness, R. Liu, R. Ghosh, T. O'Neill, D. Liu and E. Eiser, ''Soft Matter'' '''16''', 990-1001 (2020) | ||
+ | #: [http://dx.doi.org/10.1039/C9SM01398A On the Role of Flexibility in Linker-Mediated DNA Hydrogels] ([https://arxiv.org/abs/1909.05611 arXiv]) | ||
+ | # E. Benson, M. Lolaico, Y. Tarasov, A. Gådin and B. Högberg, ''ACS Nano'' '''13''', 12591-12598 (2019) | ||
+ | #: [https://doi.org/10.1021/acsnano.9b03473 Evolutionary Refinement of DNA Nanostructures Using Coarse-Grained Molecular Dynamics Simulations] | ||
+ | # S.W. Shin, S.Y. Ahn, Y.T. Lim and S.H. Um, ''Anal. Chem.'' '''91''', 14808-14811 (2019) | ||
+ | #: [https://doi.org/10.1021/acs.analchem.9b03173 Improved Sensitivity of Intramolecular Strand Displacement Based on Localization of Probes] | ||
+ | # Z. Shi and G. Arya, ''Nucleic Acids Research'' '''48''', 548-560 (2020) | ||
+ | #: [https://doi.org/10.1093/nar/gkz1137 Free energy landscape of salt-actuated reconfigurable DNA nanodevices] | ||
+ | # E. Torelli, J.W. Kozyra, B. Shirt-Ediss, L. Piantanida, K. Voïtchovsky, N. Krasnogor, ''ACS Synth. Biol.'' '''9''', 1682-1692 (2020) | ||
+ | #: [https://doi.org/10.1021/acssynbio.0c00009 Co-transcriptional folding of a bio-orthogonal fluorescent scaffolded RNA origami] ([https://doi.org/10.1101/864678 bioRxiv]) | ||
+ | # P.R Desai, S. Brahmachari, J.F. Marko, S. Das, K.C. Neuman, submitted | ||
+ | #: Coarse-Grained Modeling of DNA Plectoneme Formation in the Presence of Base-Pair Mismatches ([https://doi.org/10.1101/2019.12.20.885533 bioRxiv]) | ||
+ | # K. Bartnik, A. Barth, M. Pilo-Pais, A.H. Crevenna, T. Liedl and D.C. Lamb, ''J. Am. Chem. Soc'' '''142''', 815-825 (2020). | ||
+ | #:[https://doi.org/10.1021/jacs.9b09093 A DNA origami platform for single-pair Förster resonance energy transfer investigation of DNA–DNA interactions and ligation] | ||
+ | # E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang and P. Šulc, ''Nucleic Acids Res.'' '''48''', e72 (2020) | ||
+ | #: [https://doi.org/10.1093/nar/gkaa417 Design, optimization, and analysis of large DNA and RNA nanostructures through interactive visualization, editing, and molecular simulation] ([https://doi.org/10.1101/2020.01.24.917419 bioRxiv]) | ||
+ | # M.C. Engel, F. Romano, A.A. Louis and J.P.K. Doye, ''J. Chem. Theor. Comput.'' '''16''', 7764–7775 (2020). | ||
+ | #: [https://doi.org/10.1021/acs.jctc.0c00286 Measuring internal forces in single-stranded DNA: Application to a DNA force clamp] ([http://arxiv.org/abs/arXiv:2007.13865 arXiv]) | ||
+ | # C. Bores and B.M. Pettitt, ''Phys. Rev. E'' '''101''', 012406 (2020) | ||
+ | #: [https://doi.org/10.1103/PhysRevE.101.012406 Structure and the role of filling rate on model dsDNA packed in a phage capsid] | ||
+ | # A. Bader and S.L. Cockroft, ''Chem. Commun.'' '''56''', 5135-5138 (2020) | ||
+ | #: [https://doi.org/10.1039/D0CC00882F Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices] | ||
+ | # J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck and M.C. Engel, M. Matthies, E. Benson, E. Poppleton and B.E.K. Snodin, ''Methods in Molecular Biology'', submitted. | ||
+ | #: The oxDNA coarse-grained model as a tool to simulate DNA origami ([http://arxiv.org/abs/2004.05052 arXiv]) ([http://dx.doi.org/10.5287/bodleian:vgqKg0rYo data]) | ||
+ | # J. Lee, J.-H. Huh, S. Lee, ''Langmuir'' '''36''', 5118–5125 (2020) | ||
+ | #: [https://doi.org/10.1021/acs.langmuir.0c00239 DNA Base Pair-Stacking Crystallization of Gold Colloids] | ||
+ | # A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, submitted | ||
+ | #: Repeat DNA-PAINT suppresses background and non-specific signals in optical nanoscopy ([https://doi.org/10.1101/2020.04.24.059410 bioRxiv]) | ||
+ | # B. Najafi, K.G. Young, J. Bath, A.A. Louis, J.P.K. Doye and A.J. Turberfield, submitted | ||
+ | #: Characterising DNA T-motifs by simulation and experiment ([https://arxiv.org/abs/2005.11545 arXiv]) | ||
+ | # C.M. Huang, A. Kucinic, J.A. Johnson, H.-J. Su, C.E. Castro, submitted | ||
+ | #: Integrating computer-aided engineering and computer-aided design for DNA assemblies ([https://doi.org/10.1101/2020.05.28.119701 bioRxiv]) | ||
+ | # P. Irmisch, T.E. Ouldridge, and R. Seidel, ''J. Am. Chem. Soc'' '''142''', 11451–11463 (2020) | ||
+ | #: [https://doi.org/10.1021/jacs.0c03105 Modelling DNA-strand displacement reactions in the presence of base-pair mismatches] | ||
+ | # F. Hong, J.S. Schreck and P. Šulc, ''Nucleic Acids Res.'' '''48''', 10726–10738 (2020). | ||
+ | #: [https://doi.org/10.1093/nar/gkaa854 Understanding DNA interactions in crowded environments with a coarse-grained model] ([https://doi.org/10.1101/2020.06.08.140434 bioRxiv]) | ||
+ | # A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, ''J. Am. Chem. Soc.'' '''142''', 12069–12078 (2020) | ||
+ | #: [https://doi.org/10.1021/jacs.9b03418 Detecting nanoscale distribution of protein pairs by proximity dependent super-resolution microscopy] ([https://doi.org/10.1101/591081 bioRxiv]) | ||
+ | # H. Chhabra, G. Mishra, Y. Cao, D. Prešern, E. Skoruppa, M.M.C. Tortora and J.P.K. Doye, ''J. Chem. Theor. Comput.'' '''16''', 7748–7763 (2020). | ||
+ | #: [https://dx.doi.org/10.1021/acs.jctc.0c00661 Computing the elastic mechanical properties of rod-like DNA nanostructures] ([http://arXiv.org arXiv]) | ||
+ | # K. Tapio, A. Mostafa, Y. Kanehira, A. Suma, A. Dutta, I. Bald, submitted | ||
+ | #: A versatile DNA origami based plasmonic nanoantenna for label-free single-molecule SERS ([https://doi.org/10.21203/rs.3.rs-47458/v1 Research Square]) | ||
+ | # E.G. Noya, C.K. Wong, P. Llombart and J.P.K. Doye, submitted | ||
+ | #: How to design an icosahedral quasicrystal through directional bonding | ||
+ | # Y.A.G. Fosado, F. Landuzzi and T. Sakaue, submitted | ||
+ | #: Twist dynamics and buckling instability of ring DNA: Effect of groove asymmetry and anisotropic bending ([https://arxiv.org/abs/2008.05686 arXiv]) | ||
+ | # F. Spinozzi, M.G. Ortore, G. Nava, F. Bomboi, F. Carducci, H. Amenitsch, T. Bellini, F. Sciortino, and P. Mariani, ''Langmuir'' '''36''', 10387–10396 (2020) | ||
+ | #: [https://doi.org/10.1021/acs.langmuir.0c01520 Gelling without structuring: a SAXS study of the interactions among DNA nanostars] | ||
+ | # J. Huang A. Suma, M. Cui, G. Grundmeier, V. Carnevale, Y. Zhang, C. Kielar and A. Keller, ''Small Str.'' '''1''', 2000038 (2020) | ||
+ | #: [https://doi.org/10.1002/sstr.202000038 Arranging small molecules with sub‐nanometer precision on DNA origami substrates for the single‐molecule investigation of protein‐ligand interactions] | ||
+ | # G. Yao, F. Zhang, F. Wang, T. Peng, H. Liu, E. Poppleton, P. Šulc, S. Jiang, L. Liu, C. Gong, X. Jing, X. Liu, L. Wang, Y. Liu, C. Fan and H. Yan, ''Nat. Chem.'' '''12''', 1067–1075 (2020) | ||
+ | #: [https://doi.org/10.1038/s41557-020-0539-8 Meta-DNA structures] | ||
+ | # J.F. Berengut, C.K. Wong, J.C. Berengut, J.P.K. Doye, T.E. Ouldridge and L.K. Lee, ''ACS Nano'' '''14''', 17428–17441 (2020) | ||
+ | #: [http://dx.doi.org/10.1021/acsnano.0c07696 Self-limiting polymerization of DNA origami subunits with strain accumulation] | ||
+ | # J. Procyk, E. Poppleton and P. Šulc, ''Soft Matter'' accepted. | ||
+ | #: [https://doi.org/10.1039/D0SM01639J Coarse-grained nucleic acid-protein model for hybrid nanotechnology] ([https://arxiv.org/abs/2009.09589 arXiv]) | ||
+ | # Z. Sierzega, J. Wereszczynski and C. Prior, ''Sci. Rep.'' '''11''', 1527 (2021) | ||
+ | #: [https://doi.org/10.1038/s41598-020-80851-8 WASP: A software package for correctly characterizing the topological development of ribbon structures] ([https://doi.org/10.1101/2020.09.17.301309 bioRXiv]) | ||
+ | # E. Skoruppa, A. Voorspoels, J. Vreede and E. Carlon, submitted | ||
+ | #: Length scale dependent elasticity in DNA from coarse-grained and all-atom models ([https://arxiv.org/abs/2010.01302 arXiv]) | ||
+ | # C. Bores, M. Woodson, M.C. Morais, and B. Montgomery Pettitt, ''J. Phys. Chem. B'' '''124''', 10337–10344 (2020) | ||
+ | #: [https://doi.org/10.1021/acs.jpcb.0c07478 Effects of model shape, volume, and softness of the capsid for DNA packaging of phi29] | ||
+ | # E. Lattuada, D. Caprara, V. Lamberti, F. Sciortino, ''Nanoscale'' '''12''', 23003-23012 (2020) | ||
+ | #: [https://doi.org/10.1039/D0NR04840B Hyperbranched DNA clusters] ([https://arxiv.org/abs/2011.07854 arXiv]) | ||
+ | # B.J.H.M. Rosier, A.J. Markvoort, B. Gumí Audenis, J.A.L. Roodhuizen, A. den Hamer, L. Brunsveld & T.F.A. de Greef, ''Nat. Catal.'' '''3''', 295–306 (2020) | ||
+ | #: [https://doi.org/10.1038/s41929-019-0403-7 Proximity-induced caspase-9 activation on a DNA origami-based synthetic apoptosome] | ||
+ | |||
+ | We are also maintaining a list of all published papers using oxDNA at [https://publons.com/researcher/3051012/oxdna-oxrna/ publons]. |
Latest revision as of 17:38, 15 January 2021
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, Phys. Rev. Lett. 104, 178101 (2010)
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Phys. Condens. Matter. 22, 104102 (2010)
- T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Chem. Phys, 134, 085101 (2011)
- T. E. Ouldridge, D.Phil. Thesis, University of Oxford, 2011.
- F. Romano, A. Hudson, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 136, 215102 (2012)
- C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, Soft Matter 8, 8388 (2012)
- C. Matek, T. E. Ouldridge, A. Levy, J. P. K. Doye, A. A. Louis, J. Phys. Chem. B 116, 1161-11625 (2012)
- P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 137, 135101 (2012)
- T.E. Ouldridge, J. Chem. Phys. 137, 144105 (2012)
- F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 138, 085101 (2013)
- T. E. Ouldridge, R. L. Hoare, A. A. Louis, J. P. K. Doye, J. Bath, A. J. Turberfield, ACS Nano 7, 2479-2490 (2013)
- T. E. Ouldridge, P. Šulc, F. Romano, J. P. K. Doye, A. A. Louis, Nucleic Acids Res. 41, 8886-8895 (2013)
- J.P.K. Doye, T. E. Ouldridge, A. A. Louis, F. Romano, P. Šulc, C. Matek, B.E.K. Snodin, L. Rovigatti, J. S. Schreck, R.M. Harrison, W.P.J. Smith, Phys. Chem. Chem. Phys 15, 20395-20414 (2013)
- N. Srinivas, T. E. Ouldridge, P. Šulc, J. M. Schaeffer, B. Yurke, A. A. Louis, J. P. K. Doye, E. Winfree, Nucleic Acids Res. 41, 10641-10658 (2013)
- P. Šulc, T. E. Ouldridge, F. Romano, J. P. K. Doye, A. A. Louis, Natural Computing 13, 535 (2014)
- L. Rovigatti, F. Bomboi, F. Sciortino, J. Chem. Phys. 140, 154903 (2014)
- P. Šulc, F. Romano, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 140, 235102 (2014)
- L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ACS Nano 8, 3567-3574 (2014)
- Q. Wang, B. M. Pettitt, Biophys. J. 106, 1182–1193 (2014)
- J. S. Schreck, T. E. Ouldridge, F. Romano, P. Šulc, L. Shaw, A. A. Louis, J.P.K. Doye, Nucleic Acids Res. 43, 6181-6190 (2014)
- R. Machinek, T.E. Ouldridge, N.E.C. Haley, J. Bath, A. J. Turberfield, Nature Comm. 5, 5324 (2014)
- M. Mosayebi, F. Romano, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, J. Phys. Chem. B 118, 14326-14335 (2014)
- I. Y. Loh, J.Cheng, S. R. Tee, A. Efremov, and Z. Wang, ACS Nano 8, 10293–10304 (2014)
- C. Matek, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, Sci. Rep., 5, 7655 (2015)
- L. Rovigatti, P. Šulc, I. Reguly, F. Romano, J. Comput. Chem., 36, 1-8 (2015)
- P. Krstić, B. Ashcroft and S. Lindsay, Nanotechnology, 26, 084001 (2015)
- F. Romano and F. Sciortino, Phys. Rev. Lett. 114, 078104 (2015)
- J. S. Schreck, T. E. Ouldridge, F. Romano, A. A. Louis, J.P.K. Doye, J. Chem. Phys. 142, 165101 (2015)
- M. Mosayebi, A. A. Louis, J.P.K. Doye, T. E. Ouldridge ACS Nano 9, 11993 (2015)
- T. E. Ouldridge, Mol. Phys. 113, 1-15 (2015)
- P. Šulc, T. E. Ouldridge, F. Romano, J.P.K. Doye, A. A. Louis, Biophys. J. 108, 1238-1247 (2015)
- B. E. K. Snodin, F. Randisi, M. Mosayebi, P. Šulc, J. S. Schreck, F. Romano, T. E. Ouldridge, R. Tsukanov, E. Nir, A. A. Louis, J. P. K. Doye, J. Chem. Phys. 142, 234901 (2015)
- C. Matek, P. Šulc, F. Randisi, J.P.K. Doye, A. A. Louis, J. Chem. Phys. 143, 243122 (2015)
- Q. Wang, C.G. Myers, and B.M. Pettitt, J. Phys. Chem. B 119, 4937–4943 (2015)
- R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, arXiv (2015)
- R. M. Harrison, F. Romano, T. E. Ouldridge, A. A. Louis, J.P.K. Doye, J. Chem. Theor. Comput. 15 4660-4672 (2019)
- J. Y. Lee, T. Terakawa, Z. Qi, J. B. Steinfeld, S. Redding, Y. Kwon, W. A. Gaines, W. Zhao, P. Sung, E. C. Greene, Science 349, 977-981 (2015)
- B. E. K. Snodin, F. Romano, L. Rovigatti, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ACS Nano 10, 1724-1737 (2016)
- V. Kočar, J. S. Schreck, S. Čeru, H. Gradišar, N. Bašić, T. Pisanski, J. P. K. Doye, and R. Jerala, Nat. Commun. 7, 10803 (2016)
- J. S. Schreck, F. Romano, M.H. Zimmer, A.A. Louis and J.P.K. Doye, ACS Nano, 10, 4236-4247 (2016)
- M. Liu, J. Cheng, S.R. Tee, S. Sreelatha, I.Y. Loh, and Z. Wang, ACS Nano, 10, 5882–5890 (2016)
- J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, L. Comez, L. Porcar, C.J. Jafta, G.C. Fadda, T. Bellini and F. Sciortino, J. Chem. Phys. 145, 084910 (2016)
- T. Sutthibutpong, C. Matek, C. Benham, G.G. Slade, A. Noy, C. Laughton, J.P.K. Doye, A.A. Louis and S.A. Harris, Nucleic Acids Res. 44, 9121-9130 (2016)
- Q. Wang and B.M. Pettitt, J. Phys. Chem. Lett 7, 1042–1046 (2016)
- A. Reinhardt, J.S. Schreck, F. Romano and J.P.K. Doye, J. Phys: Condens. Matter 29, 014006 (2017).
- E. Locatelli, P. H. Handle, C. N. Likos, F. Sciortino and L. Rovigatti, ACS Nano 11, 2094-2102 (2017)
- E. Skoruppa, M. Laleman, S. Nomidis, E. Carlon, J. Chem. Phys 146, 214902 (2017)
- A. Suma and C. Micheletti, Proc. Natl. Acad. Sci. USA 114, E2991–E2997 (2017)
- Z. Shi, C. E. Castro and G. Arya, ACS Nano 11, 4617–4630 (2017)
- H. Yagyu, J.-Y. Lee, D.-N. Kim, and O. Tabata, J. Phys. Chem. B 121, 5033–5039 (2017)
- S. Vangaveti, R. J. D'Esposito, J. L. Lippens, D. Fabris and S. V. Ranganathan, Phys. Chem. Chem. Phys. 19, 14937-14946 (2017)
- A. Henning-Knechtel, J. Knechtel and M. Magzoub, Nucleic Acids Res. 45, 12057–12068 (2017)
- R. Sharma, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, ACS Nano 11, 12426–12435 (2017)
- Q.Y. Yeo, I.Y. Loh, S.R. Tee, Y.H. Chiang, J. Cheng, M.H. Liu and Z.S. Wang, Nanoscale 9, 12142-12149 (2017)
- Q. Wang, R.N. Irobalieva, W. Chiu, M.F. Schmid, J.M. Fogg, L. Zechiedrich, B.M. Pettitt, Nucleic Acids Res. 45 7633-7642 (2017)
- B. Joffroy, Y.O. Uca, D. Prešern, J.P.K. Doye and T.L. Schmidt, Nucleic Acids Res. 46, 538-545 (2018)
- R.V. Reshetnikov, A.V. Stolyarova, A.O. Zalevsky, D.Y. Panteleev, G.V. Pavlova, D.V. Klinov, A.V. Golovin, A.D. Protopopova, Nucleic Acids Res. 46, 1102–1112 (2018)
- D.C. Khara, J.S. Schreck, T.E. Tomov, Y. Berger, T.E. Ouldridge, J.P.K. Doye and E. Nir, Nucleic Acids Res. 46, 1553-1561 (2018)
- P. Fonseca, F. Romano, J. S. Schreck, T.E. Ouldridge, J.P.K. Doye and A.A. Louis, J. Chem. Phys 148, 134910 (2018)
- T.D. Craggs, M. Sustarsic, A. Plochowietz, M. Mosayebi, H. Kaju, A. Cuthbert, J. Hohlbein, L. Domicevica, P.C. Biggin, J.P.K. Doye and A.N. Kapanidis, Nucleic Acids Res. 47, 10788–10800 (2019)
- S.R. Tee and Z. Wang, ACS Omega, 3, 292-301 (2018)
- E. Skoruppa, S.K. Nomidis, J.F. Marko and E. Carlon, Phys. Rev. Lett. 121, 088101 (2018)
- M.M.C. Tortora and J.P.K. Doye, Mol. Phys. 116, 2773-2791 (2018)
- O. Henrich, Y.A. Gutierrez-Fosado, T. Curk, T.E. Ouldridge, Eur. Phys. J. E 41, 57 (2018)
- M.C. Engel, D. M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis and J.P.K. Doye, ACS Nano 12, 6734-6747 (2018)
- F. Romano and L. Rovigatti, in Design of Self-Assembling Materials (Springer, ed. I. Coluzza) pp 71-90 (2017)
- S.R. Tee, X. Hu, I.Y. Loh and Z. Wang, Phys. Rev. Applied 9, 034025 (2018)
- E. Locatelli and L. Rovigatti, Polymers 10, 447 (2018)
- E. Spruijt, S.E. Tusk and H. Bayley, Nature Nanotechnology 13, 739-745 (2018)
- L. Coronel, A. Suma and C. Micheletti, Nucleic Acids Res. 46,7522–7532 (2018)
- E. Torelli, J.W. Kozyra, J.-Y. Gu, U. Stimming, L. Piantanida. K. Voitchovsky and N. Krasnogor, Scientific Reports 8, 6989 (2018)
- R. Jin and L. Maibaum, J. Chem. Phys. 150, 105103 (2019)
- F. Kriegel, C. Matek, T. Dršata, K. Kulenkampff, S. Tschirpke, M. Zacharias, F. Lankas and J. Lipfert, Nucleic Acids Res. 46, 7998–8009 (2018)
- E. Benson, A. Mohammed, D. Rayneau-Kirkhope, A. Gådin, P. Orponen, and B. Högberg, ACS Nano 12, 9291-9299 (2018)
- S.K. Nomidis, E. Skoruppa, E. Carlon and J.F. Marko, Phys. Rev. E 99 032414 (2019).
- B. E. K. Snodin, J. S. Schreck, F. Romano, A.A. Louis and J.P.K. Doye, Nucleic Acids Res. 47, 1585–1597 (2019).
- N. E. C. Haley, T. E. Ouldridge, A. Geraldini, A. A. Louis, J. Bath and A. J. Turberfield, Nat. Commun 11, 2562 (2020)
- L. Zhou, A.E. Marras, C.-M. Huang, C.E. Castro and H.-J Su, Small 14, 1802580 (2018)
- R. A. Brady, W.T. Kaufhold, N.J. Brooks, V. Foderà and L. Di Michele, J. Phys. Condens. Matter 31, 074003 (2019)
- F. Hong, S. Jiang, X. Lan, R.P. Narayanan, P. Šulc, F. Zhang, Y. Liu, and H. Yan, J. Am. Chem. Soc. 140, 14670–14676 (2018)
- Y. Choi, H. Choi, A.C. Lee, S. Kwon, J. Vis. Exp., e58364 (2018)
- M.M.C. Tortora, G. Mishra, D. Prešern and J.P.K. Doye, Sci. Adv. 6, eaaw8331 (2020)
- C.-M. Huang, A. Kucinic, J.V. Le, C.E. Castro and H.-J. Su, Nanoscale 11, 1647-1660 (2019)
- I.T. Hoffecker, S. Chen, A. Gådin, A. Bosco, A.I. Teixeira and B. Högberg, Small 15, 1803628 (2019)
- M. Coraglio, E. Skoruppa and E. Carlon, J. Chem. Phys. 150, 135101 (2019)
- M. Matthies, N.P. Agarwal, E. Poppleton, F.M. Joshi, P. Šulc, and T.L. Schmidt, ACS Nano 13 1839-1848 (2019)
- Y.A.G. Fosado, Z. Xing, E. Eiser, M. Hudek, O. Henrich, submitted
- A Numerical Study of Three-Armed DNA Hydrogel Structures (arXiv)
- W.T. Kaufhold, R.A. Brady, J.M. Tuffnell, P. Cicuta, and L. Di Michele, Bioconjugate Chem 30, 1850-1859 (2019)
- S.K. Nomidis, M. Coraglio, M. Laleman, K. Phillips, E. Skoruppa and E. Carlon, Phys. Rev. E 100, 022402 (2019)
- A. Suma, A. Stopar, A.W. Nicholson, M. Castronovo, V. Carnevale, Nucleic Acids Res. 48, 4672–4680 (2020)
- J. Liu, S. Shukor, S. Li, A. Tamayo, L. Tosi, B. Larman, V. Nanda, W.K. Olson and B. Parekkadan, Biomolecules 9, 199 (2019)
- A. Suma, E. Poppleton, M. Matthies, P. Šulc, F. Romano, A.A. Louis, J.P.K. Doye, C. Micheletti, and L. Rovigatti, J. Comput. Chem. 40, 2586-2595 (2019)
- J.F. Berengut, J.C. Berengut, J.P.K. Doye, D. Prešern, A. Kawamoto, J. Ruan, M.J. Wainwright and L.K. Lee,, Nucleic Acids Res. 47, 11963–11975(2019)
- K.G. Young, B. Najafi, W.M. Sant, S. Contera, A.A. Louis, J.P.K. Doye, A.J. Turberfield and J. Bath, Angew. Chem. Int. Ed. 59, 15942-15946 (2020)
- I.D. Stoev, T. Cao, A. Caciagli, J. Yu, C. Ness, R. Liu, R. Ghosh, T. O'Neill, D. Liu and E. Eiser, Soft Matter 16, 990-1001 (2020)
- E. Benson, M. Lolaico, Y. Tarasov, A. Gådin and B. Högberg, ACS Nano 13, 12591-12598 (2019)
- S.W. Shin, S.Y. Ahn, Y.T. Lim and S.H. Um, Anal. Chem. 91, 14808-14811 (2019)
- Z. Shi and G. Arya, Nucleic Acids Research 48, 548-560 (2020)
- E. Torelli, J.W. Kozyra, B. Shirt-Ediss, L. Piantanida, K. Voïtchovsky, N. Krasnogor, ACS Synth. Biol. 9, 1682-1692 (2020)
- P.R Desai, S. Brahmachari, J.F. Marko, S. Das, K.C. Neuman, submitted
- Coarse-Grained Modeling of DNA Plectoneme Formation in the Presence of Base-Pair Mismatches (bioRxiv)
- K. Bartnik, A. Barth, M. Pilo-Pais, A.H. Crevenna, T. Liedl and D.C. Lamb, J. Am. Chem. Soc 142, 815-825 (2020).
- E. Poppleton, J. Bohlin, M. Matthies, S. Sharma, F. Zhang and P. Šulc, Nucleic Acids Res. 48, e72 (2020)
- M.C. Engel, F. Romano, A.A. Louis and J.P.K. Doye, J. Chem. Theor. Comput. 16, 7764–7775 (2020).
- C. Bores and B.M. Pettitt, Phys. Rev. E 101, 012406 (2020)
- A. Bader and S.L. Cockroft, Chem. Commun. 56, 5135-5138 (2020)
- J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck and M.C. Engel, M. Matthies, E. Benson, E. Poppleton and B.E.K. Snodin, Methods in Molecular Biology, submitted.
- J. Lee, J.-H. Huh, S. Lee, Langmuir 36, 5118–5125 (2020)
- A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, submitted
- Repeat DNA-PAINT suppresses background and non-specific signals in optical nanoscopy (bioRxiv)
- B. Najafi, K.G. Young, J. Bath, A.A. Louis, J.P.K. Doye and A.J. Turberfield, submitted
- Characterising DNA T-motifs by simulation and experiment (arXiv)
- C.M. Huang, A. Kucinic, J.A. Johnson, H.-J. Su, C.E. Castro, submitted
- Integrating computer-aided engineering and computer-aided design for DNA assemblies (bioRxiv)
- P. Irmisch, T.E. Ouldridge, and R. Seidel, J. Am. Chem. Soc 142, 11451–11463 (2020)
- F. Hong, J.S. Schreck and P. Šulc, Nucleic Acids Res. 48, 10726–10738 (2020).
- A.H. Clowsley, W.T. Kaufhold, T. Lutz, A. Meletiou, L. Di Michele, C. Soeller, J. Am. Chem. Soc. 142, 12069–12078 (2020)
- H. Chhabra, G. Mishra, Y. Cao, D. Prešern, E. Skoruppa, M.M.C. Tortora and J.P.K. Doye, J. Chem. Theor. Comput. 16, 7748–7763 (2020).
- K. Tapio, A. Mostafa, Y. Kanehira, A. Suma, A. Dutta, I. Bald, submitted
- A versatile DNA origami based plasmonic nanoantenna for label-free single-molecule SERS (Research Square)
- E.G. Noya, C.K. Wong, P. Llombart and J.P.K. Doye, submitted
- How to design an icosahedral quasicrystal through directional bonding
- Y.A.G. Fosado, F. Landuzzi and T. Sakaue, submitted
- Twist dynamics and buckling instability of ring DNA: Effect of groove asymmetry and anisotropic bending (arXiv)
- F. Spinozzi, M.G. Ortore, G. Nava, F. Bomboi, F. Carducci, H. Amenitsch, T. Bellini, F. Sciortino, and P. Mariani, Langmuir 36, 10387–10396 (2020)
- J. Huang A. Suma, M. Cui, G. Grundmeier, V. Carnevale, Y. Zhang, C. Kielar and A. Keller, Small Str. 1, 2000038 (2020)
- G. Yao, F. Zhang, F. Wang, T. Peng, H. Liu, E. Poppleton, P. Šulc, S. Jiang, L. Liu, C. Gong, X. Jing, X. Liu, L. Wang, Y. Liu, C. Fan and H. Yan, Nat. Chem. 12, 1067–1075 (2020)
- J.F. Berengut, C.K. Wong, J.C. Berengut, J.P.K. Doye, T.E. Ouldridge and L.K. Lee, ACS Nano 14, 17428–17441 (2020)
- J. Procyk, E. Poppleton and P. Šulc, Soft Matter accepted.
- Z. Sierzega, J. Wereszczynski and C. Prior, Sci. Rep. 11, 1527 (2021)
- E. Skoruppa, A. Voorspoels, J. Vreede and E. Carlon, submitted
- Length scale dependent elasticity in DNA from coarse-grained and all-atom models (arXiv)
- C. Bores, M. Woodson, M.C. Morais, and B. Montgomery Pettitt, J. Phys. Chem. B 124, 10337–10344 (2020)
- E. Lattuada, D. Caprara, V. Lamberti, F. Sciortino, Nanoscale 12, 23003-23012 (2020)
- B.J.H.M. Rosier, A.J. Markvoort, B. Gumí Audenis, J.A.L. Roodhuizen, A. den Hamer, L. Brunsveld & T.F.A. de Greef, Nat. Catal. 3, 295–306 (2020)
We are also maintaining a list of all published papers using oxDNA at publons.