Publications: Difference between revisions

From OxDNA
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 33: Line 33:
#L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ''ACS Nano'', (2014)
#L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ''ACS Nano'', (2014)
#:[http://pubs.acs.org/doi/abs/10.1021/nn501138w Gels of DNA Nanostars Never Crystallise]
#:[http://pubs.acs.org/doi/abs/10.1021/nn501138w Gels of DNA Nanostars Never Crystallise]
#C. Matek, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, ''arXiv'', (2014)
#C. Matek, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, ''Sci. Rep.'', '''5''', 7655 (2015)
#:[http://arxiv.org/abs/1404.2869 Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA]
#:[http://dx.doi.org/10.1038/srep07655 Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA] ([http://arxiv.org/abs/1404.2869 arXiv])
#Q. Wang, B. M. Pettitt, ''Biophys. J.'' '''106''', 1182–1193 (2014)
#Q. Wang, B. M. Pettitt, ''Biophys. J.'' '''106''', 1182–1193 (2014)
#:[http://www.sciencedirect.com/science/article/pii/S0006349514000927 Modeling DNA Thermodynamics under Torsional Stress]
#:[http://www.sciencedirect.com/science/article/pii/S0006349514000927 Modeling DNA Thermodynamics under Torsional Stress]
Line 41: Line 41:
#  T. E. Ouldridge, ''arxiv'' (2014)
#  T. E. Ouldridge, ''arxiv'' (2014)
#:[http://arxiv.org/abs/1411.1927 DNA nanotechnology: understanding and optimisation through simulation]
#:[http://arxiv.org/abs/1411.1927 DNA nanotechnology: understanding and optimisation through simulation]
# M. Mosayebi, F. Romano, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ''arxiv'' (2014)
# M. Mosayebi, F. Romano, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, ''J. Phys. Chem. B'' '''118''', 14326-14335 (2014)
#:[http://arxiv.org/abs/1410.1218 The role of loop stacking in the dynamics of DNA hairpin formation]
#:[http://arxiv.org/ct?url=http%3A%2F%2Fdx.doi.org%2F10%252E1021%2Fjp510061f&v=13bb91c1 The role of loop stacking in the dynamics of DNA hairpin formation] ([http://arxiv.org/abs/1410.1218 arXiv])
# P. Šulc, T. E. Ouldridge, F. Romano, J.P.K. Doye, A. A. Louis  ''arxiv'' (2014)
# P. Šulc, T. E. Ouldridge, F. Romano, J.P.K. Doye, A. A. Louis  ''arxiv'' (2014)
#:[http://arxiv.org/abs/1411.3239 Modelling toehold-mediated RNA strand displacement]
#:[http://arxiv.org/abs/1411.3239 Modelling toehold-mediated RNA strand displacement]
# P. Krstić, B. Ashcroft and S. Lindsay, ''Nanotechnology'', (2015)
#:[http://dx.doi.org/10.1088/0957-4484/26/8/084001 Physical model for recognition tunneling]

Revision as of 12:58, 4 February 2015

  1. T. E. Ouldridge, A. A. Louis and J. P. K. Doye, Phys. Rev. Lett. 104, 178101 (2010)
    DNA Nanotweezers Studied with a Coarse-Grained Model of DNA (arXiv)
  2. T. E. Ouldridge, A. A. Louis and J. P. K. Doye, J. Chem. Phys, 134, 085101 (2011)
    Structural, mechanical and thermodynamic properties of a coarse-grained DNA model (arXiv)
  3. T. E. Ouldridge, D.Phil. Thesis, University of Oxford, 2011.
    Coarse-grained modelling of DNA and DNA self-assembly
  4. F. Romano, A. Hudson, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 136, 215102 (2012)
    The effect of topology on the structure and free energy landscape of DNA kissing complexes (arXiv)
  5. C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, Soft Matter 8, 8388 (2012)
    Self-assembly of short DNA duplexes: from a coarse-grained model to experiments through a theoretical link (arXiv)
  6. C. Matek, T. E. Ouldridge, A. Levy, J. P. K. Doye, A. A. Louis, J. Phys. Chem. B (2012)
    DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism (arXiv)
  7. P. Šulc, F. Romano, T. E. Ouldridge, L. Rovigatti, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 137, 135101 (2012)
    Sequence-dependent thermodynamics of a coarse-grained DNA model (arxiv)
  8. F. Romano, D. Chakraborty, J. P. K. Doye, T. E. Ouldridge, A. A. Louis, J. Chem. Phys. 138, 085101 (2013)
    Coarse-grained simulations of DNA overstretching (arXiv)
  9. P. Šulc, T. E. Ouldridge, F. Romano, J. P. K. Doye, A. A. Louis, Natural Computing 13, 535 (2014)
    Simulating a burnt-bridges DNA motor with a coarse-grained DNA model (arXiv)
  10. T. E. Ouldridge, R. L. Hoare, A. A. Louis, J. P. K. Doye, J. Bath, A. J. Turberfield, ACS Nano (2013)
    Optimizing DNA nanotechnology through coarse-grained modelling: a two-footed DNA walker
  11. T. E. Ouldridge, P. Šulc, F. Romano, J. P. K. Doye, A. A. Louis, Nucleic Acids Res., (2013)
    DNA hybridization kinetics: zippering, internal displacement and sequence dependence (arXiv)
  12. J.P.K. Doye, T. E. Ouldridge, A. A. Louis, F. Romano, P. Šulc, C. Matek, B.E.K. Snodin, L. Rovigatti, J. S. Schreck, R.M. Harrison, W.P.J. Smith, Phys. Chem. Chem. Phys (2013)
    Coarse-graining DNA for simulations of DNA nanotechnology (arXiv)
  13. N. Srinivas, T. E. Ouldridge, P. Šulc, J. M. Schaeffer, B. Yurke, A. A. Louis, J. P. K. Doye, E. Winfree, Nucleic Acids Res., (2013)
    On the biophysics and kinetics of toehold-mediated DNA strand displacement
  14. L. Rovigatti, F. Bomboi, F. Sciortino, J. Chem. Phys. 140, 154903 (2014)
    Accurate phase diagram of tetravalent DNA nanostars (arXiv)
  15. L. Rovigatti, P. Šulc, I. Reguly, F. Romano, J. Comput. Chem., 36, 1 (2015)
    A comparison between parallelization approaches in molecular dynamics simulations on GPUs (arXiv)
  16. P. Šulc, F. Romano, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, J. Chem. Phys. 140, 235102 (2014)
    A nucleotide-level coarse-grained model of RNA (arXiv)
  17. L. Rovigatti, F. Smallenburg, F. Romano, F. Sciortino, ACS Nano, (2014)
    Gels of DNA Nanostars Never Crystallise
  18. C. Matek, T. E. Ouldridge, J. P. K. Doye, A. A. Louis, Sci. Rep., 5, 7655 (2015)
    Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA (arXiv)
  19. Q. Wang, B. M. Pettitt, Biophys. J. 106, 1182–1193 (2014)
    Modeling DNA Thermodynamics under Torsional Stress
  20. J. S. Schreck, T. E. Ouldridge, F. Romano, P. Šulc, L. Shaw, A. A. Louis, J.P.K. Doye, arxiv (2014)
    DNA hairpins primarily promote duplex melting rather than inhibiting hybridization
  21. T. E. Ouldridge, arxiv (2014)
    DNA nanotechnology: understanding and optimisation through simulation
  22. M. Mosayebi, F. Romano, T. E. Ouldridge, A. A. Louis, J. P. K. Doye, J. Phys. Chem. B 118, 14326-14335 (2014)
    The role of loop stacking in the dynamics of DNA hairpin formation (arXiv)
  23. P. Šulc, T. E. Ouldridge, F. Romano, J.P.K. Doye, A. A. Louis arxiv (2014)
    Modelling toehold-mediated RNA strand displacement
  24. P. Krstić, B. Ashcroft and S. Lindsay, Nanotechnology, (2015)
    Physical model for recognition tunneling